166 research outputs found

    QUADRIVEN: A Framework for Qualitative Taxi Demand Prediction Based on Time-Variant Online Social Network Data Analysis

    Full text link
    [EN] Road traffic pollution is one of the key factors affecting urban air quality. There is a consensus in the community that the efficient use of public transport is the most effective solution. In that sense, much effort has been made in the data mining discipline to come up with solutions able to anticipate taxi demands in a city. This helps to optimize the trips made by such an important urban means of transport. However, most of the existing solutions in the literature define the taxi demand prediction as a regression problem based on historical taxi records. This causes serious limitations with respect to the required data to operate and the interpretability of the prediction outcome. In this paper, we introduce QUADRIVEN (QUalitative tAxi Demand pRediction based on tIme-Variant onlinE social Network data analysis), a novel approach to deal with the taxi demand prediction problem based on human-generated data widely available on online social networks. The result of the prediction is defined on the basis of categorical labels that allow obtaining a semantically-enriched output. Finally, this proposal was tested with different models in a large urban area, showing quite promising results with an F1 score above 0.8.This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Projects 20813/PI/18 and 20530/PDC/18 and by the Spanish Ministry of Science, Innovation and Universities under Grants TIN2016-78799-P (AEI/FEDER, UE) and RTC-2017-6389-5.Terroso-Saenz, F.; Muñoz-Ortega, A.; Cecilia-Canales, JM. (2019). QUADRIVEN: A Framework for Qualitative Taxi Demand Prediction Based on Time-Variant Online Social Network Data Analysis. Sensors. 19(22):1-22. https://doi.org/10.3390/s19224882S1221922Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., … Schwartz, J. D. (2017). Air Pollution and Mortality in the Medicare Population. New England Journal of Medicine, 376(26), 2513-2522. doi:10.1056/nejmoa1702747Li, B., Cai, Z., Jiang, L., Su, S., & Huang, X. (2019). Exploring urban taxi ridership and local associated factors using GPS data and geographically weighted regression. Cities, 87, 68-86. doi:10.1016/j.cities.2018.12.033Yang, Y., Yuan, Z., Fu, X., Wang, Y., & Sun, D. (2019). Optimization Model of Taxi Fleet Size Based on GPS Tracking Data. Sustainability, 11(3), 731. doi:10.3390/su11030731Smith, A. W., Kun, A. L., & Krumm, J. (2017). Predicting taxi pickups in cities. Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers. doi:10.1145/3123024.3124416Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., & Lin, L. (2019). Contextualized Spatial–Temporal Network for Taxi Origin-Destination Demand Prediction. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3875-3887. doi:10.1109/tits.2019.2915525Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014). Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260-271. doi:10.1080/15230406.2014.890072James, N. A., Kejariwal, A., & Matteson, D. S. (2016). Leveraging cloud data to mitigate user experience from ‘breaking bad’. 2016 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata.2016.7841013Kuang, L., Yan, X., Tan, X., Li, S., & Yang, X. (2019). Predicting Taxi Demand Based on 3D Convolutional Neural Network and Multi-task Learning. Remote Sensing, 11(11), 1265. doi:10.3390/rs11111265Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., … Li, L.-J. (2016). YFCC100M. Communications of the ACM, 59(2), 64-73. doi:10.1145/2812802Cho, E., Myers, S. A., & Leskovec, J. (2011). Friendship and mobility. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’11. doi:10.1145/2020408.2020579Estevez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized Mutual Information Feature Selection. IEEE Transactions on Neural Networks, 20(2), 189-201. doi:10.1109/tnn.2008.2005601Zheng, X., Han, J., & Sun, A. (2018). A Survey of Location Prediction on Twitter. IEEE Transactions on Knowledge and Data Engineering, 30(9), 1652-1671. doi:10.1109/tkde.2018.2807840Assam, R., & Seidl, T. (2014). Context-based location clustering and prediction using conditional random fields. Proceedings of the 13th International Conference on Mobile and Ubiquitous Multimedia - MUM ’14. doi:10.1145/2677972.2677989Genuer, R., Poggi, J.-M., Tuleau-Malot, C., & Villa-Vialaneix, N. (2017). Random Forests for Big Data. Big Data Research, 9, 28-46. doi:10.1016/j.bdr.2017.07.003Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., … Lv, W. (2017). The Simpler The Better. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi:10.1145/3097983.3098018Markou, I., Rodrigues, F., & Pereira, F. C. (2018). Real-Time Taxi Demand Prediction using data from the web. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). doi:10.1109/itsc.2018.8569015Zhou, Y., Wu, Y., Wu, J., Chen, L., & Li, J. (2018). Refined Taxi Demand Prediction with ST-Vec. 2018 26th International Conference on Geoinformatics. doi:10.1109/geoinformatics.2018.8557158Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., & Damas, L. (2013). Predicting Taxi–Passenger Demand Using Streaming Data. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1393-1402. doi:10.1109/tits.2013.2262376Jiang, S., Chen, W., Li, Z., & Yu, H. (2019). Short-Term Demand Prediction Method for Online Car-Hailing Services Based on a Least Squares Support Vector Machine. IEEE Access, 7, 11882-11891. doi:10.1109/access.2019.289182

    Multi-scale Attention Flow for Probabilistic Time Series Forecasting

    Full text link
    The probability prediction of multivariate time series is a notoriously challenging but practical task. On the one hand, the challenge is how to effectively capture the cross-series correlations between interacting time series, to achieve accurate distribution modeling. On the other hand, we should consider how to capture the contextual information within time series more accurately to model multivariate temporal dynamics of time series. In this work, we proposed a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF), where we integrate multi-scale attention and relative position information and the multivariate data distribution is represented by the conditioned normalizing flow. Additionally, compared with autoregressive modeling methods, our model avoids the influence of cumulative error and does not increase the time complexity. Extensive experiments demonstrate that our model achieves state-of-the-art performance on many popular multivariate datasets

    Trajectory data mining: A review of methods and applications

    Get PDF
    The increasing use of location-aware devices has led to an increasing availability of trajectory data. As a result, researchers devoted their efforts to developing analysis methods including different data mining methods for trajectories. However, the research in this direction has so far produced mostly isolated studies and we still lack an integrated view of problems in applications of trajectory mining that were solved, the methods used to solve them, and applications using the obtained solutions. In this paper, we first discuss generic methods of trajectory mining and the relationships between them. Then, we discuss and classify application problems that were solved using trajectory data and relate them to the generic mining methods that were used and real world applications based on them. We classify trajectory-mining application problems under major problem groups based on how they are related. This classification of problems can guide researchers in identifying new application problems. The relationships between the methods together with the association between the application problems and mining methods can help researchers in identifying gaps between methods and inspire them to develop new methods. This paper can also guide analysts in choosing a suitable method for a specific problem. The main contribution of this paper is to provide an integrated view relating applications of mining trajectory data and the methods used

    Advances in Public Transport Platform for the Development of Sustainability Cities

    Get PDF
    Modern societies demand high and varied mobility, which in turn requires a complex transport system adapted to social needs that guarantees the movement of people and goods in an economically efficient and safe way, but all are subject to a new environmental rationality and the new logic of the paradigm of sustainability. From this perspective, an efficient and flexible transport system that provides intelligent and sustainable mobility patterns is essential to our economy and our quality of life. The current transport system poses growing and significant challenges for the environment, human health, and sustainability, while current mobility schemes have focused much more on the private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and territorial sustainability. Transport has a very considerable weight in the framework of sustainable development due to environmental pressures, associated social and economic effects, and interrelations with other sectors. The continuous growth that this sector has experienced over the last few years and its foreseeable increase, even considering the change in trends due to the current situation of generalized crisis, make the challenge of sustainable transport a strategic priority at local, national, European, and global levels. This Special Issue will pay attention to all those research approaches focused on the relationship between evolution in the area of transport with a high incidence in the environment from the perspective of efficiency
    • …
    corecore