250 research outputs found

    Incrementally resolving references in order to identify visually present objects in a situated dialogue setting

    Get PDF
    Kennington C. Incrementally resolving references in order to identify visually present objects in a situated dialogue setting. Bielefeld: Universität Bielefeld; 2016.The primary concern of this thesis is to model the resolution of spoken referring expressions made in order to identify objects; in particular, everyday objects that can be perceived visually and distinctly from other objects. The practical goal of such a model is for it to be implemented as a component for use in a live, interactive, autonomous spoken dialogue system. The requirement of interaction imposes an added complication; one that has been ignored in previous models and approaches to automatic reference resolution: the model must attempt to resolve the reference incrementally as it unfolds–not wait until the end of the referring expression to begin the resolution process. Beyond components in dialogue systems, reference has been a major player in the philosophy of meaning for longer than a century. For example, Gottlob Frege (1892) has distinguished between Sinn (sense) and Bedeutung (reference), discussed how they are related and how they relate to the meaning of words and expressions. It has furthermore been argued (e.g., Dahlgren (1976)) that reference to entities in the actual world is not just a fundamental notion of semantic theory, but the fundamental notion; for an individual acquiring a language, understanding the meaning of many words and concepts is done via the task of reference, beginning in early childhood. In this thesis, we pursue an account of word meaning that is based on perception of objects; for example, the meaning of the word red is based on visual features that are selected as distinguishing red objects from non-red ones. This thesis proposes two statistical models of incremental reference resolution. Given ex- amples of referring expressions and visual aspects of the objects to which those expressions referred, both model components learn a functional mapping between the words of the refer- ring expressions and the visual aspects. A generative model, the simple incremental update model, presented in Chapter 5, uses a mediating variable to learn the mapping, whereas a dis- criminative model, the words-as-classifiers model, presented in Chapter 6, learns the mapping directly and improves over the generative model. Both models have been evaluated in various reference resolution tasks to objects in virtual scenes as well as real, tangible objects. This thesis shows that both models work robustly and are able to resolve referring expressions made in reference to visually present objects despite realistic, noisy conditions of speech and object recognition. A theoretical and practical comparison is also provided. Special emphasis is given to the discriminative model in this thesis because of its simplicity and ability to represent word meanings. It is in the learning and application of this model that gives credence to the above claim that reference is the fundamental notion for semantic theory and that meanings of (visual) words is done through experiencing referring expressions made to objects that are visually perceivable

    On sample efficiency and systematic generalization of grounded language understanding with deep learning

    Full text link
    En utilisant la méthodologie de l'apprentissage profond qui préconise de s'appuyer davantage sur des données et des modèles neuronaux flexibles plutôt que sur les connaissances de l'expert dans le domaine, la communauté de recherche a récemment réalisé des progrès remarquables dans la compréhension et la génération du langue naturel. Néanmoins, il reste difficile de savoir si une simple extension des méthodes d'apprentissage profond existantes sera suffisante pour atteindre l'objectif d'utiliser le langage naturel pour l'interaction homme-machine. Nous nous concentrons sur deux aspects connexes dans lesquels les méthodes actuelles semblent nécessiter des améliorations majeures. Le premier de ces aspects est l'inefficacité statistique des systèmes d'apprentissage profond: ils sont connus pour nécessiter de grandes quantités de données pour bien fonctionner. Le deuxième aspect est leur capacité limitée à généraliser systématiquement, à savoir à comprendre le langage dans des situations où la distribution des données change mais les principes de syntaxe et de sémantique restent les mêmes. Dans cette thèse, nous présentons quatre études de cas dans lesquelles nous cherchons à apporter plus de clarté concernant l'efficacité statistique susmentionnée et les aspects de généralisation systématique des approches d'apprentissage profond de la compréhension des langues, ainsi qu'à faciliter la poursuite des travaux sur ces sujets. Afin de séparer le problème de la représentation des connaissances du monde réel du problème de l'apprentissage d'une langue, nous menons toutes ces études en utilisant des langages synthétiques ancrés dans des environnements visuels simples. Dans le premier article, nous étudions comment former les agents à suivre des instructions compositionnelles dans des environnements avec une forme de supervision restreinte. À savoir pour chaque instruction et configuration initiale de l'environnement, nous ne fournissons qu'un état cible au lieu d'une trajectoire complète avec des actions à toutes les étapes. Nous adaptons les méthodes d'apprentissage adversariel par imitation à ce paramètre et démontrons qu'une telle forme restreinte de données est suffisante pour apprendre les significations compositionelles des instructions. Notre deuxième article se concentre également sur des agents qui apprennent à exécuter des instructions. Nous développons la plateforme BabyAI pour faciliter des études plus approfondies et plus rigoureuses de ce cadre d'apprentissage. La plateforme fournit une langue BabyAI compositionnelle avec 101910 ^ {19} instructions, dont la sémantique est précisément définie dans un environnement partiellement observable. Nous rapportons des résultats de référence sur la quantité de supervision nécessaire pour enseigner à l'agent certains sous-ensembles de la langue BabyAI avec différentes méthodes de formation, telles que l'apprentissage par renforcement et l'apprentissage par imitation. Dans le troisième article, nous étudions la généralisation systématique des modèles de réponse visuelle aux questions (VQA). Dans le scénario VQA, le système doit répondre aux questions compositionelles sur les images. Nous construisons un ensemble de données de questions spatiales sur les paires d'objets et évaluons la performance des différents modèles sur les questions concernant les paires d'objets qui ne se sont jamais produites dans la même question dans la distribution d'entraînement. Nous montrons que les modèles dans lesquels les significations des mots sont représentés par des modules séparés qui effectuent des calculs indépendants généralisent beaucoup mieux que les modèles dont la conception n'est pas explicitement modulaire. Cependant, les modèles modulaires ne généralisent bien que lorsque les modules sont connectés dans une disposition appropriée, et nos expériences mettent en évidence les défis de l'apprentissage de la disposition par un apprentissage de bout en bout sur la distribution d'entraînement. Dans notre quatrième et dernier article, nous étudions également la généralisation des modèles VQA à des questions en dehors de la distribution d'entraînement, mais cette fois en utilisant le jeu de données CLEVR, utilisé pour les questions complexes sur des scènes rendues en 3D. Nous générons de nouvelles questions de type CLEVR en utilisant des références basées sur la similitude (par exemple `` la balle qui a la même couleur que ... '') dans des contextes qui se produisent dans les questions CLEVR mais uniquement avec des références basées sur la localisation (par exemple `` le balle qui est à gauche de ... ''). Nous analysons la généralisation avec zéro ou quelques exemples de CLOSURE après un entraînement sur CLEVR pour un certain nombre de modèles existants ainsi qu'un nouveau modèle.By using the methodology of deep learning that advocates relying more on data and flexible neural models rather than on the expert's knowledge of the domain, the research community has recently achieved remarkable progress in natural language understanding and generation. Nevertheless, it remains unclear whether simply scaling up existing deep learning methods will be sufficient to achieve the goal of using natural language for human-computer interaction. We focus on two related aspects in which current methods appear to require major improvements. The first such aspect is the data inefficiency of deep learning systems: they are known to require extreme amounts of data to perform well. The second aspect is their limited ability to generalize systematically, namely to understand language in situations when the data distribution changes yet the principles of syntax and semantics remain the same. In this thesis, we present four case studies in which we seek to provide more clarity regarding the aforementioned data efficiency and systematic generalization aspects of deep learning approaches to language understanding, as well as to facilitate further work on these topics. In order to separate the problem of representing open-ended real-world knowledge from the problem of core language learning, we conduct all these studies using synthetic languages that are grounded in simple visual environments. In the first article, we study how to train agents to follow compositional instructions in environments with a restricted form of supervision. Namely for every instruction and initial environment configuration we only provide a goal-state instead of a complete trajectory with actions at all steps. We adapt adversarial imitation learning methods to this setting and demonstrate that such a restricted form of data is sufficient to learn compositional meanings of the instructions. Our second article also focuses on instruction following. We develop the BabyAI platform to facilitate further, more extensive and rigorous studies of this setup. The platform features a compositional Baby language with 101910^{19} instructions, whose semantics is precisely defined in a partially-observable gridworld environment. We report baseline results on how much supervision is required to teach the agent certain subsets of Baby language with different training methods, such as reinforcement learning and imitation learning. In the third article we study systematic generalization of visual question answering (VQA) models. In the VQA setting the system must answer compositional questions about images. We construct a dataset of spatial questions about object pairs and evaluate how well different models perform on questions about pairs of objects that never occured in the same question in the training distribution. We show that models in which word meanings are represented by separate modules that perform independent computation generalize much better than models whose design is not explicitly modular. The modular models, however, generalize well only when the modules are connected in an appropriate layout, and our experiments highlight the challenges of learning the layout by end-to-end learning on the training distribution. In our fourth and final article we also study generalization of VQA models to questions outside of the training distribution, but this time using the popular CLEVR dataset of complex questions about 3D-rendered scenes as the platform. We generate novel CLEVR-like questions by using similarity-based references (e.g. ``the ball that has the same color as ...'') in contexts that occur in CLEVR questions but only with location-based references (e.g. ``the ball that is to the left of ...''). We analyze zero- and few- shot generalization to CLOSURE after training on CLEVR for a number of existing models as well as a novel one

    Error handling in multimodal voice-enabled interfaces of tour-guide robots using graphical models

    Get PDF
    Mobile service robots are going to play an increasing role in the society of humans. Voice-enabled interaction with service robots becomes very important, if such robots are to be deployed in real-world environments and accepted by the vast majority of potential human users. The research presented in this thesis addresses the problem of speech recognition integration in an interactive voice-enabled interface of a service robot, in particular a tour-guide robot. The task of a tour-guide robot is to engage visitors to mass exhibitions (users) in dialogue providing the services it is designed for (e.g. exhibit presentations) within a limited time. In managing tour-guide dialogues, extracting the user goal (intention) for requesting a particular service at each dialogue state is the key issue. In mass exhibition conditions speech recognition errors are inevitable because of noisy speech and uncooperative users of robots with no prior experience in robotics. They can jeopardize the user goal identification. Wrongly identified user goals can lead to communication failures. Therefore, to reduce the risk of such failures, methods for detecting and compensating for communication failures in human-robot dialogue are needed. During the short-term interaction with visitors, the interpretation of the user goal at each dialogue state can be improved by combining speech recognition in the speech modality with information from other available robot modalities. The methods presented in this thesis exploit probabilistic models for fusing information from speech and auxiliary modalities of the robot for user goal identification and communication failure detection. To compensate for the detected communication failures we investigate multimodal methods for recovery from communication failures. To model the process of modality fusion, taking into account the uncertainties in the information extracted from each input modality during human-robot interaction, we use the probabilistic framework of Bayesian networks. Bayesian networks are graphical models that represent a joint probability function over a set of random variables. They are used to model the dependencies among variables associated with the user goals, modality related events (e.g. the event of user presence that is inferred from the laser scanner modality of the robot), and observed modality features providing evidence in favor of these modality events. Bayesian networks are used to calculate posterior probabilities over the possible user goals at each dialogue state. These probabilities serve as a base in deciding if the user goal is valid, i.e. if it can be mapped into a tour-guide service (e.g. exhibit presentation) or is undefined – signaling a possible communication failure. The Bayesian network can be also used to elicit probabilities over the modality events revealing information about the possible cause for a communication failure. Introducing new user goal aspects (e.g. new modality events and related features) that provide auxiliary information for detecting communication failures makes the design process cumbersome, calling for a systematic approach in the Bayesian network modelling. Generally, introducing new variables for user goal identification in the Bayesian networks can lead to complex and computationally expensive models. In order to make the design process more systematic and modular, we adapt principles from the theory of grounding in human communication. When people communicate, they resolve understanding problems in a collaborative joint effort of providing evidence of common shared knowledge (grounding). We use Bayesian network topologies, tailored to limited computational resources, to model a state-based grounding model fusing information from three different input modalities (laser, video and speech) to infer possible grounding states. These grounding states are associated with modality events showing if the user is present in range for communication, if the user is attending to the interaction, whether the speech modality is reliable, and if the user goal is valid. The state-based grounding model is used to compute probabilities that intermediary grounding states have been reached. This serves as a base for detecting if the the user has reached the final grounding state, or wether a repair dialogue sequence is needed. In the case of a repair dialogue sequence, the tour-guide robot can exploit the multiple available modalities along with speech. For example, if the user has failed to reach the grounding state related to her/his presence in range for communication, the robot can use its move modality to search and attract the attention of the visitors. In the case when speech recognition is detected to be unreliable, the robot can offer the alternative use of the buttons modality in the repair sequence. Given the probability of each grounding state, and the dialogue sequence that can be executed in the next dialogue state, a tour-guide robot has different preferences on the possible dialogue continuation. If the possible dialogue sequences at each dialogue state are defined as actions, the introduced principle of maximum expected utility (MEU) provides an explicit way of action selection, based on the action utility, given the evidence about the user goal at each dialogue state. Decision networks, constructed as graphical models based on Bayesian networks are proposed to perform MEU-based decisions, incorporating the utility of the actions to be chosen at each dialogue state by the tour-guide robot. These action utilities are defined taking into account the tour-guide task requirements. The proposed graphical models for user goal identification and dialogue error handling in human-robot dialogue are evaluated in experiments with multimodal data. These data were collected during the operation of the tour-guide robot RoboX at the Autonomous System Lab of EPFL and at the Swiss National Exhibition in 2002 (Expo.02). The evaluation experiments use component and system level metrics for technical (objective) and user-based (subjective) evaluation. On the component level, the technical evaluation is done by calculating accuracies, as objective measures of the performance of the grounding model, and the resulting performance of the user goal identification in dialogue. The benefit of the proposed error handling framework is demonstrated comparing the accuracy of a baseline interactive system, employing only speech recognition for user goal identification, and a system equipped with multimodal grounding models for error handling

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence

    Unsupervised structure induction and multimodal grounding

    Get PDF
    Structured representations build upon symbolic abstraction (e.g., words in natural language and visual concepts in natural images), offer a principled way of encoding our perceptions about the physical world, and enable the human-like generalization of machine learning systems. The predominant paradigm for learning structured representations of the observed data has been supervised learning, but it is limited in several respects. First, supervised learning is challenging given the scarcity of labeled data. Second, conventional approaches to structured prediction have been relying on a single modality (e.g., either images or text), ignoring the learning cues that may have been specified in and can be readily obtained from other modalities of data. In this thesis, we investigate unsupervised approaches to structure induction in a multimodal setting. Unsupervised learning is inherently difficult in general, let alone inducing complex and discrete structures from data without direct supervision. By considering the multimodal setting, we leverage the alignments between different data modalities (e.g., text, audio, and images) to facilitate the learning of structure-induction models, e.g., knowing that the individual words in ``a white pigeon'' always appear with the same visual object, a language parser is likely to treat them as a whole (i.e., phrase). The multimodal learning setting is practically viable because multimodal alignments are generally abundant. For example, they can be found in online posts such as news and tweets that usually contain images and associated text, and in (YouTube) videos, where audio, scripts, and scenes are synchronized and grounded in each other. We develop structure-induction models, which are capable of exploiting bimodal image-text alignments, for two modalities: (1) for natural language, we consider unsupervised syntactic parsing with phrase-structure grammars and regularize the parser by using visual image groundings; and (2) for visual images, we induce scene graph representations by mapping arguments and predicates in the text to their visual counterparts (i.e., visual objects and relations among them) in an unsupervised manner. While useful, crossmodal alignments are not always abundantly available on the web, e.g., the alignments between non-speech audio and text. We tackle the challenge by sharing the visual modality between image-text alignment and image-audio alignment; images function as a pivot and connect audio and text. The contributions of this thesis span from model development to data collection. We demonstrated the feasibility of applying multimodal learning techniques to unsupervised structure induction and multimodal alignment collection. Our work opens up new avenues for multimodal and unsupervised structured representation learning

    Semantic mapping for service robots: building and using maps for mobile manipulators in semi-structured environments

    Get PDF
    Although much progress has been made in the field of robotic mapping, many challenges remain including: efficient semantic segmentation using RGB-D sensors, map representations that include complex features (structures and objects), and interfaces for interactive annotation of maps. This thesis addresses how prior knowledge of semi-structured human environments can be leveraged to improve segmentation, mapping, and semantic annotation of maps. We present an organized connected component approach for segmenting RGB-D data into planes and clusters. These segments serve as input to our mapping approach that utilizes them as planar landmarks and object landmarks for Simultaneous Localization and Mapping (SLAM), providing necessary information for service robot tasks and improving data association and loop closure. These features are meaningful to humans, enabling annotation of mapped features to establish common ground and simplifying tasking. A modular, open-source software framework, the OmniMapper, is also presented that allows a number of different sensors and features to be combined to generate a combined map representation, and enabling easy addition of new feature types.Ph.D
    • …
    corecore