8,982 research outputs found

    Referential Uncertainty and Word Learning in High-dimensional, Continuous Meaning Spaces

    Get PDF
    This paper discusses lexicon word learning in high-dimensional meaning spaces from the viewpoint of referential uncertainty. We investigate various state-of-the-art Machine Learning algorithms and discuss the impact of scaling, representation and meaning space structure. We demonstrate that current Machine Learning techniques successfully deal with high-dimensional meaning spaces. In particular, we show that exponentially increasing dimensions linearly impact learner performance and that referential uncertainty from word sensitivity has no impact.Comment: Published as Spranger, M. and Beuls, K. (2016). Referential uncertainty and word learning in high-dimensional, continuous meaning spaces. In Hafner, V. and Pitti, A., editors, Development and Learning and Epigenetic Robotics (ICDL-Epirob), 2016 Joint IEEE International Conferences on, 2016. IEE

    Computational Models of Tutor Feedback in Language Acquisition

    Full text link
    This paper investigates the role of tutor feedback in language learning using computational models. We compare two dominant paradigms in language learning: interactive learning and cross-situational learning - which differ primarily in the role of social feedback such as gaze or pointing. We analyze the relationship between these two paradigms and propose a new mixed paradigm that combines the two paradigms and allows to test algorithms in experiments that combine no feedback and social feedback. To deal with mixed feedback experiments, we develop new algorithms and show how they perform with respect to traditional knn and prototype approaches.Comment: 6 pages, 8 figures, Seventh Joint IEEE International Conference on Development and Learning and on Epigenetic Robotic

    An Open Logic Approach to EPM

    Get PDF
    open2noEPM is a high operative and didactic versatile tool and new application areas are envisaged continuously. In turn, this new awareness has allowed to enlarge our panorama for neurocognitive system EPM is a high operative and didactic versatile tool and new application areas are envisaged continuosly. In turn, this new awareness has allowed to enlarge our panorama for neurocognitive system behavior understanding, and to develop information conservation and regeneration systems in a numeric self-reflexive/reflective evolutive reference framework. Unfortunately, a logically closed model cannot cope with ontological uncertainty by itself; it needs a complementary logical aperture operational support extension. To achieve this goal, it is possible to use two coupled irreducible information management subsystems, based on the following ideal coupled irreducible asymptotic dichotomy: "Information Reliable Predictability" and "Information Reliable Unpredictability" subsystems. To behave realistically, overall system must guarantee both Logical Closure and Logical Aperture, both fed by environmental "noise" (better… from what human beings call "noise"). So, a natural operating point can emerge as a new Trans-disciplinary Reality Level, out of the Interaction of Two Complementary Irreducible Information Management Subsystems within their environment. In this way, it is possible to extend the traditional EPM approach in order to profit by both classic EPM intrinsic Self-Reflexive Functional Logical Closure and new numeric CICT Self-Reflective Functional Logical Aperture. EPM can be thought as a reliable starting subsystem to initialize a process of continuous self-organizing and self-logic learning refinement. understanding, and to develop information conservation and regeneration systems in a numeric self-reflexive/reflective evolutive reference framework. Unfortunately, a logically closed model cannot cope with ontological uncertainty by itself; it needs a complementary logical aperture operational support extension. To achieve this goal, it is possible to use two coupled irreducible information management subsystems, based on the following ideal coupled irreducible asymptotic dichotomy: "Information Reliable Predictability" and "Information Reliable Unpredictability" subsystems. To behave realistically, overall system must guarantee both Logical Closure and Logical Aperture, both fed by environmental "noise" (better… from what human beings call "noise"). So, a natural operating point can emerge as a new Trans-disciplinary Reality Level, out of the Interaction of Two Complementary Irreducible Information Management Subsystems within their environment. In this way, it is possible to extend the traditional EPM approach in order to profit by both classic EPM intrinsic Self-Reflexive Functional Logical Closure and new numeric CICT Self-Reflective Functional Logical Aperture. EPM can be thought as a reliable starting subsystem to initialize a process of continuous self-organizing and self-logic learning refinement.Fiorini, Rodolfo; Degiacomo, PieroFiorini, Rodolfo; Degiacomo, Pier

    Neural models of language use:Studies of language comprehension and production in context

    Get PDF
    Artificial neural network models of language are mostly known and appreciated today for providing a backbone for formidable AI technologies. This thesis takes a different perspective. Through a series of studies on language comprehension and production, it investigates whether artificial neural networks—beyond being useful in countless AI applications—can serve as accurate computational simulations of human language use, and thus as a new core methodology for the language sciences

    Cognitive Set Theory

    Get PDF
    Cognitive Set Theory is a mathematical model of cognition which equates sets with concepts, and uses mereological elements. It has a holistic emphasis, as opposed to a reductionistic emphasis, and it therefore begins with a single universe (as opposed to an infinite collection of infinitesimal points)

    The Missing Link between Morphemic Assemblies and Behavioral Responses:a Bayesian Information-Theoretical model of lexical processing

    Get PDF
    We present the Bayesian Information-Theoretical (BIT) model of lexical processing: A mathematical model illustrating a novel approach to the modelling of language processes. The model shows how a neurophysiological theory of lexical processing relying on Hebbian association and neural assemblies can directly account for a variety of effects previously observed in behavioural experiments. We develop two information-theoretical measures of the distribution of usages of a morpheme or word, and use them to predict responses in three visual lexical decision datasets investigating inflectional morphology and polysemy. Our model offers a neurophysiological basis for the effects of morpho-semantic neighbourhoods. These results demonstrate how distributed patterns of activation naturally result in the arisal of symbolic structures. We conclude by arguing that the modelling framework exemplified here, is a powerful tool for integrating behavioural and neurophysiological results
    • …
    corecore