21,900 research outputs found

    Reference reversibility with Reference Domain Theory

    Get PDF
    International audienceIn this paper we present a reference model based on Reference Domain Theory that can work both in interpretation and generation. We introduce a formalization of key concepts of RDT, the interpretation and generation algorithms and show an example of behavior in the dynamic, asymmetric and multimodal GIVE environment

    A full Eulerian finite difference approach for solving fluid-structure coupling problems

    Full text link
    A new simulation method for solving fluid-structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation (Hirt and Nichols (1981, J. Comput. Phys., 39, 201)), which has been widely used for multiphase flow simulations, is applied to describing the multi-component geometry. The temporal change in the solid deformation is described in the Eulerian frame by updating a left Cauchy-Green deformation tensor, which is used to express constitutive equations for nonlinear Mooney-Rivlin materials. In this paper, various verifications and validations of the present full Eulerian method, which solves the fluid and solid motions on a fixed grid, are demonstrated, and the numerical accuracy involved in the fluid-structure coupling problems is examined.Comment: 38 pages, 27 figures, accepted for publication in J. Comput. Phy

    On the motivations for Merleau-Ponty’s ontological research

    Get PDF
    This paper attempts to clarify Merleau-Ponty’s later work by tracing a hitherto overlooked set of concerns that were of key consequence for the formulation of his ontological research. I argue that his ontology can be understood as a response to a set of problems originating in reflections on the intersubjective use of language in dialogue, undertaken in the early 1950s. His study of dialogue disclosed a structure of meaning-formation and pointed towards a theory of truth (both recurring ontological topics) that post-Phenomenology premises could not account for. A study of dialogue shows that speakers’ positions are interchangeable, that speaking subjects are active and passive in varying degrees, and that the intentional roles of subjects and objects are liable to shift or ‘transgress’ themselves. These observations anticipate the concepts of ‘reversibility’ and ‘narcissism’, his later view of activity and passivity, and his later view of intentionality, and sharpened the need to adopt an intersubjective focus in ontological research

    Reversibility in Queueing Models

    Full text link
    In stochastic models for queues and their networks, random events evolve in time. A process for their backward evolution is referred to as a time reversed process. It is often greatly helpful to view a stochastic model from two different time directions. In particular, if some property is unchanged under time reversal, we may better understand that property. A concept of reversibility is invented for this invariance. Local balance for a stationary Markov chain has been used for a weaker version of the reversibility. However, it is still too strong for queueing applications. We are concerned with a continuous time Markov chain, but dose not assume it has the stationary distribution. We define reversibility in structure as an invariant property of a family of the set of models under certain operation. The member of this set is a pair of transition rate function and its supporting measure, and each set represents dynamics of queueing systems such as arrivals and departures. We use a permutation {\Gamma} of the family menmbers, that is, the sets themselves, to describe the change of the dynamics under time reversal. This reversibility is is called {\Gamma}-reversibility in structure. To apply these definitions, we introduce new classes of models, called reacting systems and self-reacting systems. Using those definitions and models, we give a unified view for queues and their networks which have reversibility in structure, and show how their stationary distributions can be obtained. They include symmetric service, batch movements and state dependent routing.Comment: Submitted for publicatio

    Stabilised finite element methods for ill-posed problems with conditional stability

    Full text link
    In this paper we discuss the adjoint stabilised finite element method introduced in, E. Burman, Stabilized finite element methods for nonsymmetric, noncoercive and ill-posed problems. Part I: elliptic equations, SIAM Journal on Scientific Computing, and how it may be used for the computation of solutions to problems for which the standard stability theory given by the Lax-Milgram Lemma or the Babuska-Brezzi Theorem fails. We pay particular attention to ill-posed problems that have some conditional stability property and prove (conditional) error estimates in an abstract framework. As a model problem we consider the elliptic Cauchy problem and provide a complete numerical analysis for this case. Some numerical examples are given to illustrate the theory.Comment: Accepted in the proceedings from the EPSRC Durham Symposium Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equation

    Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility

    Get PDF
    We study the hitting times of Markov processes to target set GG, starting from a reference configuration x0x_0 or its basin of attraction. The configuration x0x_0 can correspond to the bottom of a (meta)stable well, while the target GG could be either a set of saddle (exit) points of the well, or a set of further (meta)stable configurations. Three types of results are reported: (1) A general theory is developed, based on the path-wise approach to metastability, which has three important attributes. First, it is general in that it does not assume reversibility of the process, does not focus only on hitting times to rare events and does not assume a particular starting measure. Second, it relies only on the natural hypothesis that the mean hitting time to GG is asymptotically longer than the mean recurrence time to x0x_0 or GG. Third, despite its mathematical simplicity, the approach yields precise and explicit bounds on the corrections to exponentiality. (2) We compare and relate different metastability conditions proposed in the literature so to eliminate potential sources of confusion. This is specially relevant for evolutions of infinite-volume systems, whose treatment depends on whether and how relevant parameters (temperature, fields) are adjusted. (3) We introduce the notion of early asymptotic exponential behavior to control time scales asymptotically smaller than the mean-time scale. This control is particularly relevant for systems with unbounded state space where nucleations leading to exit from metastability can happen anywhere in the volume. We provide natural sufficient conditions on recurrence times for this early exponentiality to hold and show that it leads to estimations of probability density functions
    • …
    corecore