59 research outputs found

    Dynamic Virtual Join Point Dispatch

    Get PDF
    Conceptually, join points are points in the execution of a program and advice is late-bound to them. We propose the notion of virtual join points that makes this concept explicit not only at a conceptual, but also at implementation level. In current implementations of aspect-oriented languages, binding is performed early, at deploy-time, and only a limited residual dispatch is executed. Current implementations fall in the categories of modifying the application code, modifying the meta-level of an application, or interacting with the application by means of eventsā€”the latter two already realizing virtual join points to some degree. We provide an implementation of an aspect-oriented execution environment that supports truly virtual join points and discuss how this approach also favors optimizations in the execution environment

    Shortening Time-to-Discovery with Dynamic Software Updates for Parallel High Performance Applications

    Get PDF
    Despite using multiple concurrent processors, a typical high performance parallel application is long-running, taking hours, even days to arrive at a solution. To modify a running high performance parallel application, the programmer has to stop the computation, change the code, redeploy, and enqueue the updated version to be scheduled to run, thus wasting not only the programmerā€™s time, but also expensive computing resources. To address these inefficiencies, this article describes how dynamic software updates can be used to modify a parallel application on the ļ¬‚y, thus saving the programmerā€™s time and using expensive computing resources more productively. The net effect of updating parallel applications dynamically reduces their time-to-discovery metrics, the total time it takes from posing a problem to arriving at a solution. To explore the benefits of dynamic updates for high performance applications, this article takes a two-pronged approach. First, we describe our experience in building and evaluating a system for dynamically updating applications running on a parallel cluster. We then review a large body of literature describing the existing state of the art in dynamic software updates and point out how this research can be applied to high performance applications. Our experimental results indicate that dynamic software updates have the potential to become a powerful tool in reducing the time-to-discovery metrics for high performance parallel applications

    A scalable technique for characterizing the usage of temporaries in framework-intensive Java applications

    Full text link
    Framework-intensive applications (e.g., Web applications) heavily use temporary data structures, often resulting in performance bot-tlenecks. This paper presents an optimized blended escape analysis to approximate object lifetimes and thus, to identify these tempo-raries and their uses. Empirical results show that this optimized analysis on average prunes 37 % of the basic blocks in our bench-marks, and achieves a speedup of up to 29 times compared to the original analysis. Newly defined metrics quantify key properties of temporary data structures and their uses. A detailed empirical eval-uation offers the first characterization of temporaries in framework-intensive applications. The results show that temporary data struc-tures can include up to 12 distinct object types and can traverse through as many as 14 method invocations before being captured
    • ā€¦
    corecore