826 research outputs found

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    Structured Review of Code Clone Literature

    Get PDF
    This report presents the results of a structured review of code clone literature. The aim of the review is to assemble a conceptual model of clone-related concepts which helps us to reason about clones. This conceptual model unifies clone concepts from a wide range of literature, so that findings about clones can be compared with each other

    Analyzing Clone Evolution for Identifying the Important Clones for Management

    Get PDF
    Code clones (identical or similar code fragments in a code-base) have dual but contradictory impacts (i.e., both positive and negative impacts) on the evolution and maintenance of a software system. Because of the negative impacts (such as high change-proneness, bug-proneness, and unintentional inconsistencies), software researchers consider code clones to be the number one bad-smell in a code-base. Existing studies on clone management suggest managing code clones through refactoring and tracking. However, a software system's code-base may contain a huge number of code clones, and it is impractical to consider all these clones for refactoring or tracking. In these circumstances, it is essential to identify code clones that can be considered particularly important for refactoring and tracking. However, no existing study has investigated this matter. We conduct our research emphasizing this matter, and perform five studies on identifying important clones by analyzing clone evolution history. In our first study we detect evolutionary coupling of code clones by automatically investigating clone evolution history from thousands of commits of software systems downloaded from on-line SVN repositories. By analyzing evolutionary coupling of code clones we identify a particular clone change pattern, Similarity Preserving Change Pattern (SPCP), such that code clones that evolve following this pattern should be considered important for refactoring. We call these important clones the SPCP clones. We rank SPCP clones considering their strength of evolutionary coupling. In our second study we further analyze evolutionary coupling of code clones with an aim to assist clone tracking. The purpose of clone tracking is to identify the co-change (i.e. changing together) candidates of code clones to ensure consistency of changes in the code-base. Our research in the second study identifies and ranks the important co-change candidates by analyzing their evolutionary coupling. In our third study we perform a deeper analysis on the SPCP clones and identify their cross-boundary evolutionary couplings. On the basis of such couplings we separate the SPCP clones into two disjoint subsets. While one subset contains the non-cross-boundary SPCP clones which can be considered important for refactoring, the other subset contains the cross-boundary SPCP clones which should be considered important for tracking. In our fourth study we analyze the bug-proneness of different types of SPCP clones in order to identify which type(s) of code clones have high tendencies of experiencing bug-fixes. Such clone-types can be given high priorities for management (refactoring or tracking). In our last study we analyze and compare the late propagation tendencies of different types of code clones. Late propagation is commonly regarded as a harmful clone evolution pattern. Findings from our last study can help us prioritize clone-types for management on the basis of their tendencies of experiencing late propagations. We also find that late propagation can be considerably minimized by managing the SPCP clones. On the basis of our studies we develop an automatic system called AMIC (Automatic Mining of Important Clones) that identifies the important clones for management (refactoring and tracking) and ranks these clones considering their evolutionary coupling, bug-proneness, and late propagation tendencies. We believe that our research findings have the potential to assist clone management by pin-pointing the important clones to be managed, and thus, considerably minimizing clone management effort

    PROGRAM INSPECTION AND TESTING TECHNIQUES FOR CODE CLONES AND REFACTORINGS IN EVOLVING SOFTWARE

    Get PDF
    Developers often perform copy-and-paste activities. This practice causes the similar code fragment (aka code clones) to be scattered throughout a code base. Refactoring for clone removal is beneficial, preventing clones from having negative effects on software quality, such as hidden bug propagation and unintentional inconsistent changes. However, recent research has provided evidence that factoring out clones does not always reduce the risk of introducing defects, and it is often difficult or impossible to remove clones using standard refactoring techniques. To investigate which or how clones can be refactored, developers typically spend a significant amount of their time managing individual clone instances or clone groups scattered across a large code base. To address the problem, this research proposes two techniques to inspect and validate refactoring changes. First, we propose a technique for managing clone refactorings, Pattern-based clone Refactoring Inspection (PRI), using refactoring pattern templates. By matching the refactoring pattern templates against a code base, it summarizes refactoring changes of clones, and detects the clone instances not consistently factored out as potential anomalies. Second, we propose Refactoring Investigation and Testing technique, called RIT. RIT improves the testing efficiency for validating refactoring changes. RIT uses PRI to identify refactorings by analyzing original and edited versions of a program. It then uses the semantic impact of a set of identified refactoring changes to detect tests whose behavior may have been affected and modified by refactoring edits. Given each failed asserts, RIT helps developers focus their attention on logically related program statements by applying program slicing for minimizing each test. For debugging purposes, RIT determines specific failure-inducing refactoring edits, separating from other changes that only affect other asserts or tests
    • โ€ฆ
    corecore