638 research outputs found

    Context-Aware and Adaptable eLearning Systems

    Get PDF
    The full text file attached to this record contains a copy of the thesis without the authors publications attached. The list of publications that are attached to the complete thesis can be found on pages 6-7 in the thesis.This thesis proposed solutions to some shortcomings to current eLearning architectures. The proposed DeLC architecture supports context-aware and adaptable provision of eLearning services and electronic content. The architecture is fully distributed and integrates service-oriented development with agent technology. Central to this architecture is that a node is our unit of computation (known as eLearning node) which can have purely service-oriented architecture, agent-oriented architecture or mixed architecture. Three eLeaerning Nodes have been implemented in order to demonstrate the vitality of the DeLC concept. The Mobile eLearning Node uses a three-level communication network, called InfoStations network, supporting mobile service provision. The services, displayed on this node, are to be aware of its context, gather required learning material and adapted to the learner request. This is supported trough a multi-layered hybrid (service- and agent-oriented) architecture whose kernel is implemented as middleware. For testing of the middleware a simulation environment has been developed. In addition, the DeLC development approach is proposed. The second eLearning node has been implemented as Education Portal. The architecture of this node is poorly service-oriented and it adopts a client-server architecture. In the education portal, there are incorporated education services and system services, called engines. The electronic content is kept in Digital Libraries. Furthermore, in order to facilitate content creators in DeLC, the environment Selbo2 was developed. The environment allows for creating new content, editing available content, as well as generating educational units out of preexisting standardized elements. In the last two years, the portal is used in actual education at the Faculty of Mathematics and Informatics, University of Plovdiv. The third eLearning node, known as Agent Village, exhibits a purely agent-oriented architecture. The purpose of this node is to provide intelligent assistance to the services deployed on the Education Pportal. Currently, two kinds of assistants are implemented in the node - eTesting Assistants and Refactoring eLearning Environment (ReLE). A more complex architecture, known as Education Cluster, is presented in this thesis as well. The Education Cluster incorporates two eLearning nodes, namely the Education Portal and the Agent Village. eLearning services and intelligent agents interact in the cluster

    A Layered Reference Architecture for Metamodels to Tailor Quality Modeling and Analysis

    Get PDF

    A Reference Structure for Modular Model-based Analyses

    Get PDF
    Kontext: In dieser Arbeit haben wir die Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit von modellbasierten Analysen untersucht. Darum untersuchten wir die Wechselbeziehungen zwischen Modellen und Analysen, insbesondere die Struktur und Abhängigkeiten von Artefakten und die Dekomposition und Komposition von modellbasierten Analysen. Herausforderungen: Softwareentwickler verwenden Modelle von Softwaresystemen, um die Evolvierbarkeit und Wiederverwendbarkeit eines Architekturentwurfs zu bestimmen. Diese Modelle ermöglichen die Softwarearchitektur zu analysieren, bevor die erste Zeile Code geschreiben wird. Aufgrund evolutionärer Veränderungen sind modellbasierte Analysen jedoch auch anfällig für eine Verschlechterung der Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit. Diese Probleme lassen sich auf die Ko-Evolution von Modellierungssprache und Analyse zurückführen. Der Zweck einer Analyse ist die systematische Untersuchung bestimmter Eigenschaften eines zu untersuchenden Systems. Nehmen wir zum Beispiel an, dass Softwareentwickler neue Eigenschaften eines Softwaresystems analysieren wollen. In diesem Fall müssen sie Merkmale der Modellierungssprache und die entsprechenden modellbasierten Analysen anpassen, bevor sie neue Eigenschaften analysieren können. Merkmale in einer modellbasierten Analyse sind z.\,B. eine Analysetechnik, die eine solche Qualitätseigenschaft analysiert. Solche Änderungen führen zu einer erhöhten Komplexität der modellbasierten Analysen und damit zu schwer zu pflegenden modellbasierten Analysen. Diese steigende Komplexität verringert die Verständlichkeit der modellbasierten Analysen. Infolgedessen verlängern sich die Entwicklungszyklen, und die Softwareentwickler benötigen mehr Zeit, um das Softwaresystem an veränderte Anforderungen anzupassen. Stand der Technik: Derzeitige Ansätze ermöglichen die Kopplung von Analysen auf einem System oder über verteilte Systeme hinweg. Diese Ansätze bieten die technische Struktur für die Kopplung von Simulationen, nicht aber eine Struktur wie Komponenten (de)komponiert werden können. Eine weitere Herausforderung beim Komponieren von Analysen ist der Verhaltensaspekt, der sich darin äußert, wie sich die Analysekomponenten gegenseitig beeinflussen. Durch die Synchronisierung jeder beteiligten Simulation erhöht die Modularisierung von Simulationen den Kommunikationsbedarf. Derzeitige Ansätze erlauben es, den Kommunikationsaufwand zu reduzieren; allerdings werden bei diesen Ansätzen die Dekomposition und Komposition dem Benutzer überlassen. Beiträge: Ziel dieser Arbeit ist es, die Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit von modellbasierten Analysen zu verbessern. Zu diesem Zweck wird die Referenzarchitektur für domänenspezifische Modellierungssprachen als Grundlage genommen und die Übertragbarkeit der Struktur der Referenzarchitektur auf modellbasierte Analysen untersucht. Die geschichtete Referenzarchitektur bildet die Abhängigkeiten der Analysefunktionen und Analysekomponenten ab, indem sie diese bestimmten Schichten zuordnet. Wir haben drei Prozesse für die Anwendung der Referenzarchitektur entwickelt: (i) Refactoring einer bestehenden modellbasierten Analyse, (ii) Entwurf einer neuen modellbasierten Analyse und (iii) Erweiterung einer bestehenden modellbasierten Analyse. Zusätzlich zur Referenzarchitektur für modellbasierte Analysen haben wir wiederkehrende Strukturen identifiziert, die zu Problemen bei der Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit führen; in der Literatur werden diese wiederkehrenden Strukturen auch als Bad Smells bezeichnet. Wir haben etablierte modellbasierte Analysen untersucht und dreizehn Bad Smells identifiziert und spezifiziert. Neben der Spezifizierung der Bad Smells bieten wir einen Prozess zur automatischen Identifizierung dieser Bad Smells und Strategien für deren Refactoring, damit Entwickler diese Bad Smells vermeiden oder beheben können. In dieser Arbeit haben wir auch eine Modellierungssprache zur Spezifikation der Struktur und des Verhaltens von Simulationskomponenten entwickelt. Simulationen sind Analysen, um ein System zu untersuchen, wenn das Experimentieren mit dem bestehenden System zu zeitaufwändig, zu teuer, zu gefährlich oder einfach unmöglich ist, weil das System (noch) nicht existiert. Entwickler können die Spezifikation nutzen, um Simulationskomponenten zu vergleichen und so identische Komponenten zu identifizieren. Validierung: Die Referenzarchitektur für modellbasierte Analysen, haben wir evaluiert, indem wir vier modellbasierte Analysen in die Referenzarchitektur überführt haben. Wir haben eine szenariobasierte Evaluierung gewählt, die historische Änderungsszenarien aus den Repositories der modellbasierten Analysen ableitet. In der Auswertung können wir zeigen, dass sich die Evolvierbarkeit und Verständlichkeit durch die Bestimmung der Komplexität, der Kopplung und der Kohäsion verbessert. Die von uns verwendeten Metriken stammen aus der Informationstheorie, wurden aber bereits zur Bewertung der Referenzarchitektur für DSMLs verwendet. Die Bad Smells, die durch die Co-Abhängigkeit von modellbasierten Analysen und ihren entsprechenden DSMLs entstehen, haben wir evaluiert, indem wir vier modellbasierte Analysen nach dem Auftreten unserer schlechten Gerüche durchsucht und dann die gefundenen Bad Smells behoben haben. Wir haben auch eine szenariobasierte Auswertung gewählt, die historische Änderungsszenarien aus den Repositories der modellbasierten Analysen ableitet. Wir können zeigen, dass die Bad Smells die Evolvierbarkeit und Verständlichkeit negativ beeinflussen, indem wir die Komplexität, Kopplung und Kohäsion vor und nach der Refaktorisierung bestimmen. Den Ansatz zum Spezifizieren und Finden von Komponenten modellbasierter Analysen haben wir evaluiert, indem wir Komponenten von zwei modellbasierten Analysen spezifizieren und unseren Suchalgorithmus verwenden, um ähnliche Analysekomponenten zu finden. Die Ergebnisse der Evaluierung zeigen, dass wir in der Lage sind, ähnliche Analysekomponenten zu finden und dass unser Ansatz die Suche nach Analysekomponenten mit ähnlicher Struktur und ähnlichem Verhalten und damit die Wiederverwendung solcher Komponenten ermöglicht. Nutzen: Die Beiträge unserer Arbeit unterstützen Architekten und Entwickler bei ihrer täglichen Arbeit, um wartbare und wiederverwendbare modellbasierte Analysen zu entwickeln. Zu diesem Zweck stellen wir eine Referenzarchitektur bereit, die die modellbasierte Analyse und die domänenspezifische Modellierungssprache aufeinander abstimmt und so die Koevolution erleichtert. Zusätzlich zur Referenzarchitektur bieten wir auch Refaktorisierungsoperationen an, die es Architekten und Entwicklern ermöglichen, eine bestehende modellbasierte Analyse an die Referenzarchitektur anzupassen. Zusätzlich zu diesem technischen Aspekt haben wir drei Prozesse identifiziert, die es Architekten und Entwicklern ermöglichen, eine neue modellbasierte Analyse zu entwickeln, eine bestehende modellbasierte Analyse zu modularisieren und eine bestehende modellbasierte Analyse zu erweitern. Dies geschieht natürlich so, dass die Ergebnisse mit der Referenzarchitektur konform sind. Darüber hinaus ermöglicht unsere Spezifikation den Entwicklern, bestehende Simulationskomponenten zu vergleichen und sie bei Bedarf wiederzuverwenden. Dies erspart den Entwicklern die Neuimplementierung von Komponenten

    Open Scope: A Pragmatic JavaScript Pattern for Modular Instrumentation

    Get PDF
    We report on our experience instrumenting Narcissus, a JavaScript interpreter written in JavaScript, to allow the dynamic deployment of dynamic program analyses. Instrumenting an interpreter is a cross-cutting change that can affect many parts of the interpreter source code. We propose a simple open scope pattern that minimizes the changes to the interpreter, while allowing us to implement program analyses in their own files, and to compose them dynamically. We apply our pattern to Narcissus using standard JavaScript features, and find that the gain in extensibility offsets a small loss in performance

    Architecture-based Evolution of Dependable Software-intensive Systems

    Get PDF
    This cumulative habilitation thesis, proposes concepts for (i) modelling and analysing dependability based on architectural models of software-intensive systems early in development, (ii) decomposition and composition of modelling languages and analysis techniques to enable more flexibility in evolution, and (iii) bridging the divergent levels of abstraction between data of the operation phase, architectural models and source code of the development phase

    Exception handling in the development of fault-tolerant component-based systems

    Get PDF
    Orientador: Cecilia Mary Fischer RubiraTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Mecanismos de tratamento de exceções foram concebidos com o intuito de facilitar o gerenciamento da complexidade de sistemas de software tolerantes a falhas. Eles promovem uma separação textual explícita entre o código normal e o código que lida com situações anormais, afim de dar suporte a construção de programas que são mais concisos fáceis de evoluir e confáveis. Diversas linguagens de programação modernas e a maioria dos modelos de componentes implementam mecanismos de tratamento de exceções. Apesar de seus muitos benefícios, tratamento de exceções pode ser a fonte de diversas falhas de projeto se usado de maneira indisciplinada. Estudos recentes mostram que desenvolvedores de sistemas de grande escala baseados em infra-estruturas de componentes têm hábitos, no tocante ao uso de tratamento de exceções, que tornam suas aplicações vulneráveis a falhas e difíceis de se manter. Componentes de software criam novos desafios com os quais mecanismos de tratamento de exceções tradicionais não lidam, o que aumenta a probabilidade de que problemas ocorram. Alguns exemplos são indisponibilidade de código fonte e incompatibilidades arquiteturais. Neste trabalho propomos duas técnicas complementares centradas em tratamento de exceções para a construção de sistemas tolerantes a falhas baseados em componentes. Ambas têm ênfase na estrutura do sistema como um meio para se reduzir o impacto de mecanismos de tolerância a falhas em sua complexidade total e o número de falhas de projeto decorrentes dessa complexidade. A primeira é uma abordagem para o projeto arquitetural dos mecanismos de recuperação de erros de um sistema. Ela trata do problema de verificar se uma arquitetura de software satisfaz certas propriedades relativas ao fluxo de exceções entre componentes arquiteturais, por exemplo, se todas as exceções lançadas no nível arquitetural são tratadas. A abordagem proposta lança de diversas ferramentas existentes para automatizar ao máximo esse processo. A segunda consiste em aplicar programação orientada a aspectos (AOP) afim de melhorar a modularização de código de tratamento de exceções. Conduzimos um estudo aprofundado com o objetivo de melhorar o entendimento geral sobre o efeitos de AOP no código de tratamento de exceções e identificar as situações onde seu uso é vantajoso e onde não éAbstract: Exception handling mechanisms were conceived as a means to help managing the complexity of fault-tolerant software. They promote an explicit textual separation between normal code and the code that deals with abnormal situations, in order to support the construction of programs that are more concise, evolvable, and reliable. Several mainstream programming languages and most of the existing component models implement exception handling mechanisms. In spite of its many bene?ts, exception handling can be a source of many design faults if used in an ad hoc fashion. Recent studies show that developers of large-scale software systems based on component infrastructures have habits concerning the use of exception handling that make applications vulnerable to faults and hard to maintain. Software components introduce new challenges which are not addressed by traditional exception handling mechanisms and increase the chances of problems occurring. Examples include unavailability of source code and architectural mismatches. In this work, we propose two complementary techniques centered on exception handling for the construction of fault-tolerant component-based systems. Both of them emphasize system structure as a means to reduce the impactof fault tolerance mechanisms on the overall complexity of a software system and the number of design faults that stem from complexity. The ?rst one is an approach for the architectural design of a system?s error handling capabilities. It addresses the problem of verifying whether a software architecture satis?es certain properties of interest pertaining the ?ow of exceptions between architectural components, e.g., if all the exceptions signaled at the architectural level are eventually handled. The proposed approach is based on a set of existing tools that automate this process as much as possible. The second one consists in applying aspect-oriented programming (AOP) to better modularize exception handling code. We have conducted a through study aimed at improving our understanding of the efects of AOP on exception handling code and identifying the situations where its use is advantageous and the ones where it is notDoutoradoDoutor em Ciência da Computaçã
    corecore