896 research outputs found

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Investigating Automatic Static Analysis Results to Identify Quality Problems: an Inductive Study

    Get PDF
    Background: Automatic static analysis (ASA) tools examine source code to discover "issues", i.e. code patterns that are symptoms of bad programming practices and that can lead to defective behavior. Studies in the literature have shown that these tools find defects earlier than other verification activities, but they produce a substantial number of false positive warnings. For this reason, an alternative approach is to use the set of ASA issues to identify defect prone files and components rather than focusing on the individual issues. Aim: We conducted an exploratory study to investigate whether ASA issues can be used as early indicators of faulty files and components and, for the first time, whether they point to a decay of specific software quality attributes, such as maintainability or functionality. Our aim is to understand the critical parameters and feasibility of such an approach to feed into future research on more specific quality and defect prediction models. Method: We analyzed an industrial C# web application using the Resharper ASA tool and explored if significant correlations exist in such a data set. Results: We found promising results when predicting defect-prone files. A set of specific Resharper categories are better indicators of faulty files than common software metrics or the collection of issues of all issue categories, and these categories correlate to different software quality attributes. Conclusions: Our advice for future research is to perform analysis on file rather component level and to evaluate the generalizability of categories. We also recommend using larger datasets as we learned that data sparseness can lead to challenges in the proposed analysis proces

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Program Synthesis for Program Analysis

    Get PDF
    In this article, we propose a unified framework for designing static analysers based on program synthesis. For this purpose, we identify a fragment of second-order logic with restricted quantification that is expressive enough to model numerous static analysis problems (e.g., safety proving, bug finding, termination and non-termination proving, refactoring). As our focus is on programs that use bit-vectors, we build a decision procedure for this fragment over finite domains in the form of a program synthesiser. We provide instantiations of our framework for solving a diverse range of program verification tasks such as termination, non-termination, safety and bug finding, superoptimisation, and refactoring. Our experimental results show that our program synthesiser compares positively with specialised tools in each area as well as with general-purpose synthesisers

    Verification of high-level transformations with inductive refinement types

    Get PDF
    International audienceHigh-level transformation languages like Rascal include expressive features for manipulating large abstract syntax trees: first-class traversals, expressive pattern matching, backtrack-ing and generalized iterators. We present the design and implementation of an abstract interpretation tool, Rabit, for verifying inductive type and shape properties for transformations written in such languages. We describe how to perform abstract interpretation based on operational semantics, specifically focusing on the challenges arising when analyzing the expressive traversals and pattern matching. Finally, we evaluate Rabit on a series of transformations (normaliza-tion, desugaring, refactoring, code generators, type inference, etc.) showing that we can effectively verify stated properties. CCS Concepts • Software and its engineering → General programming languages; • Social and professional topics → History of programming languages
    corecore