1,237 research outputs found

    A Set of Refactoring Rules for UML-B Specifications

    Get PDF
    UML-B is a graphical formal modelling notation which is based on UML and relies on Event-B and its verification tools. In this paper, we propose annealing and introduce subtyping rules as well-known refactoring rules which can improve and assist the derivation of object-oriented design from an abstract specification written in UML-B. We prove that the proposed annealing rules are behavior preserving. We also demonstrate the applicability and effectiveness of our refactoring rules by applying them on two UML-B specifications

    Towards a Formalism-Based Toolkit for Automotive Applications

    Full text link
    The success of a number of projects has been shown to be significantly improved by the use of a formalism. However, there remains an open issue: to what extent can a development process based on a singular formal notation and method succeed. The majority of approaches demonstrate a low level of flexibility by attempting to use a single notation to express all of the different aspects encountered in software development. Often, these approaches leave a number of scalability issues open. We prefer a more eclectic approach. In our experience, the use of a formalism-based toolkit with adequate notations for each development phase is a viable solution. Following this principle, any specific notation is used only where and when it is really suitable and not necessarily over the entire software lifecycle. The approach explored in this article is perhaps slowly emerging in practice - we hope to accelerate its adoption. However, the major challenge is still finding the best way to instantiate it for each specific application scenario. In this work, we describe a development process and method for automotive applications which consists of five phases. The process recognizes the need for having adequate (and tailored) notations (Problem Frames, Requirements State Machine Language, and Event-B) for each development phase as well as direct traceability between the documents produced during each phase. This allows for a stepwise verification/validation of the system under development. The ideas for the formal development method have evolved over two significant case studies carried out in the DEPLOY project

    The composition of Event-B models

    No full text
    The transition from classical B [2] to the Event-B language and method [3] has seen the removal of some forms of model structuring and composition, with the intention of reinventing them in future. This work contributes to thatreinvention. Inspired by a proposed method for state-based decomposition and refinement [5] of an Event-B model, we propose a familiar parallel event composition (over disjoint state variable lists), and the less familiar event fusion (over intersecting state variable lists). A brief motivation is provided for these and other forms of composition of models, in terms of feature-based modelling. We show that model consistency is preserved under such compositions. More significantly we show that model composition preserves refinement

    Proceedings of the 2008 Oxford University Computing Laboratory student conference.

    Get PDF
    This conference serves two purposes. First, the event is a useful pedagogical exercise for all participants, from the conference committee and referees, to the presenters and the audience. For some presenters, the conference may be the first time their work has been subjected to peer-review. For others, the conference is a testing ground for announcing work, which will be later presented at international conferences, workshops, and symposia. This leads to the conference's second purpose: an opportunity to expose the latest-and-greatest research findings within the laboratory. The fourteen abstracts within these proceedings were selected by the programme and conference committee after a round of peer-reviewing, by both students and staff within this department

    Event-B モデルの詳細化構造の計画とリファクタリングの支援手法

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 蓮尾 一郎, 東京大学教授 萩谷 昌己, 東京大学教授 小林 直樹, 東京大学教授 高野 明彦, 東京大学教授 千葉 滋University of Tokyo(東京大学
    corecore