2,198 research outputs found

    Class-Level Refactoring Prediction by Ensemble Learning with Various Feature Selection Techniques

    Get PDF
    Background: Refactoring is changing a software system without affecting the software functionality. The current researchers aim i to identify the appropriate method(s) or class(s) that needs to be refactored in object-oriented software. Ensemble learning helps to reduce prediction errors by amalgamating different classifiers and their respective performances over the original feature data. Other motives are added in this paper regarding several ensemble learners, errors, sampling techniques, and feature selection techniques for refactoring prediction at the class level. Objective: This work aims to develop an ensemble-based refactoring prediction model with structural identification of source code metrics using different feature selection techniques and data sampling techniques to distribute the data uniformly. Our model finds the best classifier after achieving fewer errors during refactoring prediction at the class level. Methodology: At first, our proposed model extracts a total of 125 software metrics computed from object-oriented software systems processed for a robust multi-phased feature selection method encompassing Wilcoxon significant text, Pearson correlation test, and principal component analysis (PCA). The proposed multi-phased feature selection method retains the optimal features characterizing inheritance, size, coupling, cohesion, and complexity. After obtaining the optimal set of software metrics, a novel heterogeneous ensemble classifier is developed using techniques such as ANN-Gradient Descent, ANN-Levenberg Marquardt, ANN-GDX, ANN-Radial Basis Function; support vector machine with different kernel functions such as LSSVM-Linear, LSSVM-Polynomial, LSSVM-RBF, Decision Tree algorithm, Logistic Regression algorithm and extreme learning machine (ELM) model are used as the base classifier. In our paper, we have calculated four different errors i.e., Mean Absolute Error (MAE), Mean magnitude of Relative Error (MORE), Root Mean Square Error (RMSE), and Standard Error of Mean (SEM). Result: In our proposed model, the maximum voting ensemble (MVE) achieves better accuracy, recall, precision, and F-measure values (99.76, 99.93, 98.96, 98.44) as compared to the base trained ensemble (BTE) and it experiences less errors (MAE = 0.0057, MORE = 0.0701, RMSE = 0.0068, and SEM = 0.0107) during its implementation to develop the refactoring model. Conclusions: Our experimental result recommends that MVE with upsampling can be implemented to improve the performance of the refactoring prediction model at the class level. Furthermore, the performance of our model with different data sampling techniques and feature selection techniques has been shown in the form boxplot diagram of accuracy, F-measure, precision, recall, and area under the curve (AUC) parameters.publishedVersio

    Refactoring Process Models in Large Process Repositories.

    Get PDF
    With the increasing adoption of process-aware information systems (PAIS), large process model repositories have emerged. Over time respective models have to be re-aligned to the real-world business processes through customization or adaptation. This bears the risk that model redundancies are introduced and complexity is increased. If no continuous investment is made in keeping models simple, changes are becoming increasingly costly and error-prone. Though refactoring techniques are widely used in software engineering to address related problems, this does not yet constitute state-of-the art in business process management. Process designers either have to refactor process models by hand or cannot apply respective techniques at all. This paper proposes a set of behaviour-preserving techniques for refactoring large process repositories. This enables process designers to eectively deal with model complexity by making process models better understandable and easier to maintain

    Keeping the Cost of Process Change Low through Refactoring

    Get PDF
    With the increasing adoption of process-aware information systems (PAIS) large process model repositories have emerged. Over time respective models have to be re-aligned to the real world business processes through customization or adaptation. This bears the risk that model redundancies are introduced and complexity is increased. If no continuous investment is made in keeping models simple, changes are becoming increasingly costly and error-prone. Although refactoring techniques are widely used in software engineering to address related problems, this does not yet constitute state-of-the art in business process management. Consequently, process designers either have to refactor process models by hand or can not apply respective techniques at all. In this paper we propose a set of techniques for refactoring large process repositories, which are behaviour-preserving. The proposed refactorings enable process designers to effectively deal with model complexity by making process models easier to change, less error-prone and better understandable

    Can Network Analysis Techniques help to Predict Design Dependencies? An Initial Study

    Full text link
    The degree of dependencies among the modules of a software system is a key attribute to characterize its design structure and its ability to evolve over time. Several design problems are often correlated with undesired dependencies among modules. Being able to anticipate those problems is important for developers, so they can plan early for maintenance and refactoring efforts. However, existing tools are limited to detecting undesired dependencies once they appeared in the system. In this work, we investigate whether module dependencies can be predicted (before they actually appear). Since the module structure can be regarded as a network, i.e, a dependency graph, we leverage on network features to analyze the dynamics of such a structure. In particular, we apply link prediction techniques for this task. We conducted an evaluation on two Java projects across several versions, using link prediction and machine learning techniques, and assessed their performance for identifying new dependencies from a project version to the next one. The results, although preliminary, show that the link prediction approach is feasible for package dependencies. Also, this work opens opportunities for further development of software-specific strategies for dependency prediction.Comment: Accepted at ICSA 201

    Are Smell-Based Metrics Actually Useful in Effort-Aware Structural Change-Proneness Prediction? An Empirical Study

    Get PDF
    Bad code smells (also named as code smells) are symptoms of poor design choices in implementation. Existing studies empirically confirmed that the presence of code smells increases the likelihood of subsequent changes (i.e., change-proness). However, to the best of our knowledge, no prior studies have leveraged smell-based metrics to predict particular change type (i.e., structural changes). Moreover, when evaluating the effectiveness of smell-based metrics in structural change-proneness prediction, none of existing studies take into account of the effort inspecting those change-prone source code. In this paper, we consider five smell-based metrics for effort-aware structural change-proneness prediction and compare these metrics with a baseline of well-known CK metrics in predicting particular categories of change types. Specifically, we first employ univariate logistic regression to analyze the correlation between each smellbased metric and structural change-proneness. Then, we build multivariate prediction models to examine the effectiveness of smell-based metrics in effort-aware structural change-proneness prediction when used alone and used together with the baseline metrics, respectively. Our experiments are conducted on six Java open-source projects with up to 60 versions and results indicate that: (1) all smell-based metrics are significantly related to structural change-proneness, except metric ANS in hive and SCM in camel after removing confounding effect of file size; (2) in most cases, smell-based metrics outperform the baseline metrics in predicting structural change-proneness; and (3) when used together with the baseline metrics, the smell-based metrics are more effective to predict change-prone files with being aware of inspection effort
    corecore