253 research outputs found

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code CC', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then CC' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials

    Efficiently decoding Reed-Muller codes from random errors

    Full text link
    Reed-Muller codes encode an mm-variate polynomial of degree rr by evaluating it on all points in {0,1}m\{0,1\}^m. We denote this code by RM(m,r)RM(m,r). The minimal distance of RM(m,r)RM(m,r) is 2mr2^{m-r} and so it cannot correct more than half that number of errors in the worst case. For random errors one may hope for a better result. In this work we give an efficient algorithm (in the block length n=2mn=2^m) for decoding random errors in Reed-Muller codes far beyond the minimal distance. Specifically, for low rate codes (of degree r=o(m)r=o(\sqrt{m})) we can correct a random set of (1/2o(1))n(1/2-o(1))n errors with high probability. For high rate codes (of degree mrm-r for r=o(m/logm)r=o(\sqrt{m/\log m})), we can correct roughly mr/2m^{r/2} errors. More generally, for any integer rr, our algorithm can correct any error pattern in RM(m,m(2r+2))RM(m,m-(2r+2)) for which the same erasure pattern can be corrected in RM(m,m(r+1))RM(m,m-(r+1)). The results above are obtained by applying recent results of Abbe, Shpilka and Wigderson (STOC, 2015), Kumar and Pfister (2015) and Kudekar et al. (2015) regarding the ability of Reed-Muller codes to correct random erasures. The algorithm is based on solving a carefully defined set of linear equations and thus it is significantly different than other algorithms for decoding Reed-Muller codes that are based on the recursive structure of the code. It can be seen as a more explicit proof of a result of Abbe et al. that shows a reduction from correcting erasures to correcting errors, and it also bares some similarities with the famous Berlekamp-Welch algorithm for decoding Reed-Solomon codes.Comment: 18 pages, 2 figure

    Optimal Iris Fuzzy Sketches

    Full text link
    Fuzzy sketches, introduced as a link between biometry and cryptography, are a way of handling biometric data matching as an error correction issue. We focus here on iris biometrics and look for the best error-correcting code in that respect. We show that two-dimensional iterative min-sum decoding leads to results near the theoretical limits. In particular, we experiment our techniques on the Iris Challenge Evaluation (ICE) database and validate our findings.Comment: 9 pages. Submitted to the IEEE Conference on Biometrics: Theory, Applications and Systems, 2007 Washington D

    List Decoding Tensor Products and Interleaved Codes

    Full text link
    We design the first efficient algorithms and prove new combinatorial bounds for list decoding tensor products of codes and interleaved codes. We show that for {\em every} code, the ratio of its list decoding radius to its minimum distance stays unchanged under the tensor product operation (rather than squaring, as one might expect). This gives the first efficient list decoders and new combinatorial bounds for some natural codes including multivariate polynomials where the degree in each variable is bounded. We show that for {\em every} code, its list decoding radius remains unchanged under mm-wise interleaving for an integer mm. This generalizes a recent result of Dinur et al \cite{DGKS}, who proved such a result for interleaved Hadamard codes (equivalently, linear transformations). Using the notion of generalized Hamming weights, we give better list size bounds for {\em both} tensoring and interleaving of binary linear codes. By analyzing the weight distribution of these codes, we reduce the task of bounding the list size to bounding the number of close-by low-rank codewords. For decoding linear transformations, using rank-reduction together with other ideas, we obtain list size bounds that are tight over small fields.Comment: 32 page

    Decoding Reed-Muller codes over product sets

    Get PDF
    We give a polynomial time algorithm to decode multivariate polynomial codes of degree dd up to half their minimum distance, when the evaluation points are an arbitrary product set SmS^m, for every d<Sd < |S|. Previously known algorithms can achieve this only if the set SS has some very special algebraic structure, or if the degree dd is significantly smaller than S|S|. We also give a near-linear time randomized algorithm, which is based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d0d 0. Our result gives an mm-dimensional generalization of the well known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.Comment: 25 pages, 0 figure

    Product Construction of Affine Codes

    Full text link
    Binary matrix codes with restricted row and column weights are a desirable method of coded modulation for power line communication. In this work, we construct such matrix codes that are obtained as products of affine codes - cosets of binary linear codes. Additionally, the constructions have the property that they are systematic. Subsequently, we generalize our construction to irregular product of affine codes, where the component codes are affine codes of different rates.Comment: 13 pages, to appear in SIAM Journal on Discrete Mathematic
    corecore