10,833 research outputs found

    A Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to Knowledge Acquisition

    Get PDF
    Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to knowledge acquisition is proposed in this paper as a viable solution to the challenges of rule-based unwieldiness and sharp boundary problem in building a fuzzy rule-based expert system. The fuzzy models were based on domain experts’ opinion about the data description. The proposed approach is committed to modelling of a compact Fuzzy Rule-Based Expert Systems. It is also aimed at providing a platform for instant update of the knowledge-base in case new knowledge is discovered. The insight to the new approach strategies and underlining assumptions, the structure of FARME-D and its practical application in medical domain was discussed. Also, the modalities for the validation of the FARME-D approach were discussed

    Taming Wild High Dimensional Text Data with a Fuzzy Lash

    Full text link
    The bag of words (BOW) represents a corpus in a matrix whose elements are the frequency of words. However, each row in the matrix is a very high-dimensional sparse vector. Dimension reduction (DR) is a popular method to address sparsity and high-dimensionality issues. Among different strategies to develop DR method, Unsupervised Feature Transformation (UFT) is a popular strategy to map all words on a new basis to represent BOW. The recent increase of text data and its challenges imply that DR area still needs new perspectives. Although a wide range of methods based on the UFT strategy has been developed, the fuzzy approach has not been considered for DR based on this strategy. This research investigates the application of fuzzy clustering as a DR method based on the UFT strategy to collapse BOW matrix to provide a lower-dimensional representation of documents instead of the words in a corpus. The quantitative evaluation shows that fuzzy clustering produces superior performance and features to Principal Components Analysis (PCA) and Singular Value Decomposition (SVD), two popular DR methods based on the UFT strategy

    Fuzzy-based Propagation of Prior Knowledge to Improve Large-Scale Image Analysis Pipelines

    Get PDF
    Many automatically analyzable scientific questions are well-posed and offer a variety of information about the expected outcome a priori. Although often being neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and the direct information about the ambiguity inherent in the extracted data. We present a new concept for the estimation and propagation of uncertainty involved in image analysis operators. This allows using simple processing operators that are suitable for analyzing large-scale 3D+t microscopy images without compromising the result quality. On the foundation of fuzzy set theory, we transform available prior knowledge into a mathematical representation and extensively use it enhance the result quality of various processing operators. All presented concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point detection, segmentation, multiview fusion and tracking. Furthermore, the functionality of the proposed approach is validated on a comprehensive simulated 3D+t benchmark data set that mimics embryonic development and on large-scale light-sheet microscopy data of a zebrafish embryo. The general concept introduced in this contribution represents a new approach to efficiently exploit prior knowledge to improve the result quality of image analysis pipelines. Especially, the automated analysis of terabyte-scale microscopy data will benefit from sophisticated and efficient algorithms that enable a quantitative and fast readout. The generality of the concept, however, makes it also applicable to practically any other field with processing strategies that are arranged as linear pipelines.Comment: 39 pages, 12 figure
    • …
    corecore