68,466 research outputs found

    Memory and Complexity Analysis of On-the-Fly Coding Schemes for Multimedia Multicast Communications

    Get PDF
    A new class of erasure codes for delay-constraint applications, called on-the-fly coding, have recently been introduced for their improvements in terms of recovery delay and achievable capacity. Despite their promising characteristics, little is known about the complexity of the systematic and non-systematic variants of this code, notably for live multicast transmission of multimedia content which is their ideal use case. Our paper aims to fill this gap and targets specifically the metrics relevant to mobile receivers with limited resources: buffer size requirements and computation complexity of the receiver. As our contribution, we evaluate both code variants on uniform and bursty erasure channels. Results obtained are unequivocal and demonstrate that the systematic codes outperform the nonsystematic ones, in terms of both the buffer occupancy and computation overhead

    A study of the selection of microcomputer architectures to automate planetary spacecraft power systems

    Get PDF
    Performance and reliability models of alternate microcomputer architectures as a methodology for optimizing system design were examined. A methodology for selecting an optimum microcomputer architecture for autonomous operation of planetary spacecraft power systems was developed. Various microcomputer system architectures are analyzed to determine their application to spacecraft power systems. It is suggested that no standardization formula or common set of guidelines exists which provides an optimum configuration for a given set of specifications

    Save up to 99% of your time in mapping validation

    Get PDF
    Identifying semantic correspondences between different vocabularies has been recognized as a fundamental step towards achieving interoperability. Several manual and automatic techniques have been recently proposed. Fully manual approaches are very precise, but extremely costly. Conversely, automatic approaches tend to fail when domain specific background knowledge is needed. Consequently, they typically require a manual validation step. Yet, when the number of computed correspondences is very large, the validation phase can be very expensive. In order to reduce the problems above, we propose to compute the minimal set of correspondences, that we call the minimal mapping, which are sufficient to compute all the other ones. We show that by concentrating on such correspondences we can save up to 99% of the manual checks required for validation

    Error Avoiding Quantum Codes and Dynamical Stabilization of Grover's Algorithm

    Get PDF
    An error avoiding quantum code is presented which is capable of stabilizing Grover's quantum search algorithm against a particular class of coherent errors. This error avoiding code consists of states only which are factorizable in the computational basis. Furthermore, its redundancy is smaller than the one which is achievable with a general error correcting quantum code saturating the quantum Hamming bound. The fact that this code consists of factorizable states only may offer advantages for the implementation of quantum gates in the error free subspace

    Identifying Security-Critical Cyber-Physical Components in Industrial Control Systems

    Get PDF
    In recent years, Industrial Control Systems (ICS) have become an appealing target for cyber attacks, having massive destructive consequences. Security metrics are therefore essential to assess their security posture. In this paper, we present a novel ICS security metric based on AND/OR graphs that represent cyber-physical dependencies among network components. Our metric is able to efficiently identify sets of critical cyber-physical components, with minimal cost for an attacker, such that if compromised, the system would enter into a non-operational state. We address this problem by efficiently transforming the input AND/OR graph-based model into a weighted logical formula that is then used to build and solve a Weighted Partial MAX-SAT problem. Our tool, META4ICS, leverages state-of-the-art techniques from the field of logical satisfiability optimisation in order to achieve efficient computation times. Our experimental results indicate that the proposed security metric can efficiently scale to networks with thousands of nodes and be computed in seconds. In addition, we present a case study where we have used our system to analyse the security posture of a realistic water transport network. We discuss our findings on the plant as well as further security applications of our metric.Comment: Keywords: Security metrics, industrial control systems, cyber-physical systems, AND-OR graphs, MAX-SAT resolutio

    Mathematical Estimation of Logical Masking Capability of Majority/Minority Gates Used in Nanoelectronic Circuits

    Full text link
    In nanoelectronic circuit synthesis, the majority gate and the inverter form the basic combinational logic primitives. This paper deduces the mathematical formulae to estimate the logical masking capability of majority gates, which are used extensively in nanoelectronic digital circuit synthesis. The mathematical formulae derived to evaluate the logical masking capability of majority gates holds well for minority gates, and a comparison with the logical masking capability of conventional gates such as NOT, AND/NAND, OR/NOR, and XOR/XNOR is provided. It is inferred from this research work that the logical masking capability of majority/minority gates is similar to that of XOR/XNOR gates, and with an increase of fan-in the logical masking capability of majority/minority gates also increases
    • …
    corecore