429 research outputs found

    Increasing the reliability and the profit in a redundancy allocation problem

    Get PDF
    This paper proposes a new mathematical model for multi-objective redundancy allocation problem (RAP) without component mixing in each subsystem when the redundancy strategy can be chosen for individual subsystems. Majority of the mathematical model for the multi-objective redundancy allocation problems (MORAP) assume that the redundancy strategy for each subsystem is predetermined and fixed. In general, active redundancy has received more attention in the past. However, in practice both active and cold-standby redundancies may be used within a particular system design and the choice of the redundancy strategy becomes an additional decision variable. The proposed model for MORAP simultaneously maximizes the reliability and the net profit of the system. And finally, to clarify the proposed mathematical model a numerical example will be solved. Keywords: Redundancy Allocation Problem, Serial-Parallel System, Redundancy Strategies, MORAP

    After-sales services optimisation through dynamic opportunistic maintenance: a wind energy case study

    Get PDF
    After-sales maintenance services can be a very profitable source of incomes for original equipment manufacturers (OEM) due to the increasing interest of assets’ users on performance-based contracts. However, when it concerns the product value-adding process, OEM have traditionally been more focused on improving their production processes, rather than on complementing their products by offering after-sales services; consequently leading to difficulties in offering them efficiently. Furthermore, both due to the high uncertainty of the assets’ behaviour and the inherent challenges of managing the maintenance process (e.g. maintenance strategy to be followed or resources to be deployed), it is complex to make business out of the provision of after-sales services. With the aim of helping the business and maintenance decision makers at this point, this paper proposes a framework for optimising the incomes of after-sales maintenance services through: 1) implementing advanced multi-objective opportunistic maintenance strategies that sistematically consider the assets’ operational context in order to perform preventive maintenance during most favourable conditions, 2) considering the specific OEMs’ and users’ needs, and 3) assessing both internal and external uncertainties that might condition the after-sales services’ success. The developed case study for the wind energy sector demonstrates the suitability of the presented framework for optimising the after-sales services.EU Framework Programme Horizon 2020, MSCA-RISE-2014: Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) (grant agreement number 645733- Sustain-Owner-H2020-MSCA-RISE-2014) and the EmaitekPlus 2016-2017 Program of the Basque Government

    Solving reliability redundancy allocation problem in using genetic algorithm

    Get PDF
    Reliability is a critical subject in engineering field. Increasing system’s reliability is one of the challenging parts of engineering. There are several structures for reliability’s model and one of them is k-out-of-n. Redundancy allocation problem (RAP) is a method to improve system reliability. It is divided into two types, namely, active and standby subsystems. Standby subsystem is divided into Cold, Warm and Hot standby. This study is focused on solving redundancy allocation reliability model by using genetic algorithm (GA). A k-out-of-n reliability’s system is chosen as a case study which was introduced by Coit (2003). Failure rate for each subsystem is dependent on the number of components which is used in the system design. Cold standby and active strategies are used in the redundancy allocation problem (RAP). The study has proposed the best setting for the RAP based on GA. The best setting among the investigated scenarios is the designing with cold standby strategy; experimental results give beta value and number of component for each subsystem. for system reliability at 0.97661 is the best reliability value given by the GA

    An integrated operation and maintenance framework for offshore renewable energy

    Get PDF
    Offshore renewable devices hold a large potential as renewable energy sources, but their deployment costs are still too high compared to those of other technologies. Operation and maintenance, as well as management of the assets, are main contributors to the overall costs of the projects, and decision-support tools in this area are required to decrease the final cost of energy.\\ In this thesis a complete characterisation and optimisation framework for the operation, maintenance and assets management of an offshore renewable farm is presented. The methodology uses known approaches, based on Monte Carlo simulation for the characterisation of the key performance indicators of the offshore renewable farm, and genetic algorithms as a search heuristic for the proposal of improved strategies. These methods, coupled in an integrated framework, constitute a novel and valuable tool to support the decision-making process in this area. The methods developed consider multiple aspects for the accurate description of the problem, including considerations on the reliability of the devices and limitations on the offshore operations dictated by the properties of the maintenance assets. Mechanisms and constraints that influence the maintenance procedures are considered and used to determine the optimal strategy. The models are flexible over a range of offshore renewable technologies, and adaptable to different offshore farm sizes and layouts, as well as maintenance assets and configurations of the devices. The approaches presented demonstrate the potential for cost reduction in the operation and maintenance strategy selection, and highlight the importance of computational tools to improve the profitability of a project while ensuring that satisfactory levels of availability and reliability are preserved. Three case studies to show the benefits of application of such methodologies, as well as the validity of their implementation, are provided. Areas for further development are identified, and suggestions to improve the effectiveness of decision-making tools for the assets management of offshore renewable technologies are provided.European CommissionMojo Ocean Dynamics Ltd. T/A Mojo Maritime Lt

    Genetic algorithms for condition-based maintenance optimization under uncertainty

    Get PDF
    International audienceThis paper proposes and compares different techniques for maintenance optimization based on Genetic Algorithms (GA), when the parameters of the maintenance model are affected by uncertainty and the fitness values are represented by Cumulative Distribution Functions (CDFs). The main issues addressed to tackle this problem are the development of a method to rank the uncertain fitness values, and the definition of a novel Pareto dominance concept. The GA-based methods are applied to a practical case study concerning the setting of a condition-based maintenance policy on the degrading nozzles of a gas turbine operated in an energy production plant

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc

    Contributions au développement de politiques de remplacement préventif pour des sytèmes multi-composants

    Get PDF
    Dans cette thèse, nous proposons de développer des politiques de remplacement préventif pour des systèmes multi-composants. Ces systèmes sont composés de plusieurs composants selon une configuration bien déterminée et dont l’état se dégrade d’une manière aléatoire. Les politiques de remplacement définissent les actions à entreprendre en fonction de l'état du système ou de ses composants et ont pour objectif de retarder l'apparition des pannes et de prolonger la durée de vie du système. Sur le plan théorique, la généralisation des modèles de remplacement des systèmes mono-composants à des systèmes multi-composants n'est pas évidente. La difficulté réside essentiellement dans l’existence d’interaction ou de dépendance entre les différents composants du système. Nous nous sommes concentrés dans cette thèse sur les dépendances stochastique et économique entre les composants. Pour la dépendance stochastique, la propagation de la panne a été modélisée par l’effet domino pour un système parallèle à deux composants. Nous avons proposé deux politiques de remplacement de type Age. Dans la première politique, nous avons supposé que la structure des coûts est constante alors que dans la deuxième politique cette hypothèse a été modifiée en prenant une structure de coûts variable. Nous avons aussi proposé dans le cadre de la dépendance stochastique un modèle de remplacement bi-objectif qui optimise à la fois le coût espéré du remplacement et la disponibilité du système. Pour la dépendance économique, nous avons proposé une politique de remplacement basée sur le comptage des pannes pour un système parallèle et nous l’avons intégrée dans un modèle d’allocation de la redondance d’un système série-parallèle. Le modèle mathématique a été résolu par une approche heuristique basée sur l’algorithme du recuit simulé.The aim of this thesis is to develop preventive replacement policies for multi-component systems. Systems are composed of several components connected under a known configuration and subject to random failures. Each replacement policy defines the actions to be taken according to the state of the system or its components and it is intended to delay the occurrence of failures and extend the lifetime of the system. From the theoretical point of view, the extension of replacement models from single-component systems to multi-component systems is not obvious. The difficulty is due primarily to the interaction or dependence between the different components of the system. In this thesis the focus has been put on the stochastic and economic dependencies between components. For stochastic dependence the propagation of the failure is modeled by the domino effect for a two-component parallel system, and two age replacement policies are investigated. In the first policy, we assumed that the cost structure is constant whereas in the second policy a variable cost structure is assumed. We proposed also a bi-objective replacement model that optimizes both expected replacement cost rate and system availability. For economic dependence, we proposed a failure counting replacement policy for a parallel system and we integrated it in a redundancy allocation model for a serie-parallel system. The mathematical model has been built taking account of this policy and Simulated Annealing algorithm has been used as resolution approach
    • …
    corecore