2,060 research outputs found

    CERN Storage Systems for Large-Scale Wireless

    Get PDF
    The project aims at evaluating the use of CERN computing infrastructure for next generation sensor networks data analysis. The proposed system allows the simulation of a large-scale sensor array for traffic analysis, streaming data to CERN storage systems in an efficient way. The data are made available for offline and quasi-online analysis, enabling both long term planning and fast reaction on the environment

    Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing

    Get PDF
    The availability of many-core computing platforms enables a wide variety of technical solutions for systems across the embedded, high-performance and cloud computing domains. However, large scale manycore systems are notoriously hard to optimise. Choices regarding resource allocation alone can account for wide variability in timeliness and energy dissipation (up to several orders of magnitude). Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing covers dynamic resource allocation heuristics for manycore systems, aiming to provide appropriate guarantees on performance and energy efficiency. It addresses different types of systems, aiming to harmonise the approaches to dynamic allocation across the complete spectrum between systems with little flexibility and strict real-time guarantees all the way to highly dynamic systems with soft performance requirements. Technical topics presented in the book include: Load and Resource Models Admission Control Feedback-based Allocation and Optimisation Search-based Allocation Heuristics Distributed Allocation based on Swarm Intelligence Value-Based Allocation Each of the topics is illustrated with examples based on realistic computational platforms such as Network-on-Chip manycore processors, grids and private cloud environments.Note.-- EUR 6,000 BPC fee funded by the EC FP7 Post-Grant Open Access Pilo

    Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing

    Get PDF
    The availability of many-core computing platforms enables a wide variety of technical solutions for systems across the embedded, high-performance and cloud computing domains. However, large scale manycore systems are notoriously hard to optimise. Choices regarding resource allocation alone can account for wide variability in timeliness and energy dissipation (up to several orders of magnitude). Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing covers dynamic resource allocation heuristics for manycore systems, aiming to provide appropriate guarantees on performance and energy efficiency. It addresses different types of systems, aiming to harmonise the approaches to dynamic allocation across the complete spectrum between systems with little flexibility and strict real-time guarantees all the way to highly dynamic systems with soft performance requirements. Technical topics presented in the book include: • Load and Resource Models• Admission Control• Feedback-based Allocation and Optimisation• Search-based Allocation Heuristics• Distributed Allocation based on Swarm Intelligence• Value-Based AllocationEach of the topics is illustrated with examples based on realistic computational platforms such as Network-on-Chip manycore processors, grids and private cloud environments

    Satisfying flexible due dates in fuzzy job shop by means of hybrid evolutionary algorithms

    Get PDF
    This paper tackles the job shop scheduling problem with fuzzy sets modelling uncertain durations and flexible due dates. The objective is to achieve high-service level by maximising due-date satisfaction, considering two different overall satisfaction measures as objective functions. We show how these functions model different attitudes in the framework of fuzzy multicriteria decision making and we define a measure of solution robustness based on an existing a-posteriori semantics of fuzzy schedules to further assess the quality of the obtained solutions. As solving method, we improve a memetic algorithm from the literature by incorporating a new heuristic mechanism to guide the search through plateaus of the fitness landscape. We assess the performance of the resulting algorithm with an extensive experimental study, including a parametric analysis, and a study of the algorithm’s components and synergy between them. We provide results on a set of existing and new benchmark instances for fuzzy job shop with flexible due dates that show the competitiveness of our method.This research has been supported by the Spanish Government under research grant TIN2016-79190-R

    Timing in Technischen Sicherheitsanforderungen für Systementwürfe mit heterogenen Kritikalitätsanforderungen

    Get PDF
    Traditionally, timing requirements as (technical) safety requirements have been avoided through clever functional designs. New vehicle automation concepts and other applications, however, make this harder or even impossible and challenge design automation for cyber-physical systems to provide a solution. This thesis takes upon this challenge by introducing cross-layer dependency analysis to relate timing dependencies in the bounded execution time (BET) model to the functional model of the artifact. In doing so, the analysis is able to reveal where timing dependencies may violate freedom from interference requirements on the functional layer and other intermediate model layers. For design automation this leaves the challenge how such dependencies are avoided or at least be bounded such that the design is feasible: The results are synthesis strategies for implementation requirements and a system-level placement strategy for run-time measures to avoid potentially catastrophic consequences of timing dependencies which are not eliminated from the design. Their applicability is shown in experiments and case studies. However, all the proposed run-time measures as well as very strict implementation requirements become ever more expensive in terms of design effort for contemporary embedded systems, due to the system's complexity. Hence, the second part of this thesis reflects on the design aspect rather than the analysis aspect of embedded systems and proposes a timing predictable design paradigm based on System-Level Logical Execution Time (SL-LET). Leveraging a timing-design model in SL-LET the proposed methods from the first part can now be applied to improve the quality of a design -- timing error handling can now be separated from the run-time methods and from the implementation requirements intended to guarantee them. The thesis therefore introduces timing diversity as a timing-predictable execution theme that handles timing errors without having to deal with them in the implemented application. An automotive 3D-perception case study demonstrates the applicability of timing diversity to ensure predictable end-to-end timing while masking certain types of timing errors.Traditionell wurden Timing-Anforderungen als (technische) Sicherheitsanforderungen durch geschickte funktionale Entwürfe vermieden. Neue Fahrzeugautomatisierungskonzepte und Anwendungen machen dies jedoch schwieriger oder gar unmöglich; Aufgrund der Problemkomplexität erfordert dies eine Entwurfsautomatisierung für cyber-physische Systeme heraus. Diese Arbeit nimmt sich dieser Herausforderung an, indem sie eine schichtenübergreifende Abhängigkeitsanalyse einführt, um zeitliche Abhängigkeiten im Modell der beschränkten Ausführungszeit (BET) mit dem funktionalen Modell des Artefakts in Beziehung zu setzen. Auf diese Weise ist die Analyse in der Lage, aufzuzeigen, wo Timing-Abhängigkeiten die Anforderungen an die Störungsfreiheit auf der funktionalen Schicht und anderen dazwischenliegenden Modellschichten verletzen können. Für die Entwurfsautomatisierung ergibt sich daraus die Herausforderung, wie solche Abhängigkeiten vermieden oder zumindest so eingegrenzt werden können, dass der Entwurf machbar ist: Das Ergebnis sind Synthesestrategien für Implementierungsanforderungen und eine Platzierungsstrategie auf Systemebene für Laufzeitmaßnahmen zur Vermeidung potentiell katastrophaler Folgen von Timing-Abhängigkeiten, die nicht aus dem Entwurf eliminiert werden. Ihre Anwendbarkeit wird in Experimenten und Fallstudien gezeigt. Allerdings werden alle vorgeschlagenen Laufzeitmaßnahmen sowie sehr strenge Implementierungsanforderungen für moderne eingebettete Systeme aufgrund der Komplexität des Systems immer teurer im Entwurfsaufwand. Daher befasst sich der zweite Teil dieser Arbeit eher mit dem Entwurfsaspekt als mit dem Analyseaspekt von eingebetteten Systemen und schlägt ein Entwurfsparadigma für vorhersagbares Timing vor, das auf der System-Level Logical Execution Time (SL-LET) basiert. Basierend auf einem Timing-Entwurfsmodell in SL-LET können die vorgeschlagenen Methoden aus dem ersten Teil nun angewandt werden, um die Qualität eines Entwurfs zu verbessern -- die Behandlung von Timing-Fehlern kann nun von den Laufzeitmethoden und von den Implementierungsanforderungen, die diese garantieren sollen, getrennt werden. In dieser Arbeit wird daher Timing Diversity als ein Thema der Timing-Vorhersage in der Ausführung eingeführt, das Timing-Fehler behandelt, ohne dass sie in der implementierten Anwendung behandelt werden müssen. Anhand einer Fallstudie aus dem Automobilbereich (3D-Umfeldwahrnehmung) wird die Anwendbarkeit von Timing-Diversität demonstriert, um ein vorhersagbares Ende-zu-Ende-Timing zu gewährleisten und gleichzeitig in der Lage zu sein, bestimmte Arten von Timing-Fehlern zu maskieren

    A Contingent Systems View of Urban Logistics

    Get PDF
    As urban areas around the world continue to grow, many companies have set their sights on entering these increasingly important markets with dense and diverse customer populations. Unfortunately, the urban environment presents many unique challenges not encountered in traditional city-to-city logistics. As firms adapt to these unique challenges, differences between cities add further complexity. Applying the systems contingency theory perspective (Venkatraman, 1989), this research examines the differences between U.S. urban areas and the logistics strategies that best fit specific combinations of urban environmental characteristics. Following a multi-disciplinary literature review, case studies conducted in eight U.S. cities confirmed certain environmental characteristics and revealed various strategies tailored to individual urban environments. Next, an agent-based simulation model tested performance outcomes related to multiple environment-strategy combinations. The results highlight the impact of urban environment characteristics on logistics performance and the significance of urban area differences on logistics strategy. Finally, the dissertation concludes with recommendations for future research on integrating additional urban environmental characteristics into logistics strategy and the impact of logistics operations on urban systems in general

    Optimizing The Design Of Multimodal User Interfaces

    Get PDF
    Due to a current lack of principle-driven multimodal user interface design guidelines, designers may encounter difficulties when choosing the most appropriate display modality for given users or specific tasks (e.g., verbal versus spatial tasks). The development of multimodal display guidelines from both a user and task domain perspective is thus critical to the achievement of successful human-system interaction. Specifically, there is a need to determine how to design task information presentation (e.g., via which modalities) to capitalize on an individual operator\u27s information processing capabilities and the inherent efficiencies associated with redundant sensory information, thereby alleviating information overload. The present effort addresses this issue by proposing a theoretical framework (Architecture for Multi-Modal Optimization, AMMO) from which multimodal display design guidelines and adaptive automation strategies may be derived. The foundation of the proposed framework is based on extending, at a functional working memory (WM) level, existing information processing theories and models with the latest findings in cognitive psychology, neuroscience, and other allied sciences. The utility of AMMO lies in its ability to provide designers with strategies for directing system design, as well as dynamic adaptation strategies (i.e., multimodal mitigation strategies) in support of real-time operations. In an effort to validate specific components of AMMO, a subset of AMMO-derived multimodal design guidelines was evaluated with a simulated weapons control system multitasking environment. The results of this study demonstrated significant performance improvements in user response time and accuracy when multimodal display cues were used (i.e., auditory and tactile, individually and in combination) to augment the visual display of information, thereby distributing human information processing resources across multiple sensory and WM resources. These results provide initial empirical support for validation of the overall AMMO model and a sub-set of the principle-driven multimodal design guidelines derived from it. The empirically-validated multimodal design guidelines may be applicable to a wide range of information-intensive computer-based multitasking environments
    • …
    corecore