728 research outputs found

    Safety-related Tasks within the Set-Based Task-Priority Inverse Kinematics Framework

    Full text link
    In this paper we present a framework that allows the motion control of a robotic arm automatically handling different kinds of safety-related tasks. The developed controller is based on a Task-Priority Inverse Kinematics algorithm that allows the manipulator's motion while respecting constraints defined either in the joint or in the operational space in the form of equality-based or set-based tasks. This gives the possibility to define, among the others, tasks as joint-limits, obstacle avoidance or limiting the workspace in the operational space. Additionally, an algorithm for the real-time computation of the minimum distance between the manipulator and other objects in the environment using depth measurements has been implemented, effectively allowing obstacle avoidance tasks. Experiments with a Jaco2^2 manipulator, operating in an environment where an RGB-D sensor is used for the obstacles detection, show the effectiveness of the developed system

    Implementation and testing of a CAM postprocessor for an industrial redundant workcell with evaluation of several fuzzified Redundancy Resolution Schemes

    Full text link
    This paper describes the implementation of a postprocessor to adapt the toolpath generated by a CAM system (NXTM) to a complex workcell of eight joints (namely, a KUKA KR15/2 manipulator mounted on a linear track and synchronized with a rotary table), devoted to the rapid prototyping of 3D CAD-defined products. Previously, it evaluates several Redundancy Resolution Schemes at the joint-rate level for the configuration of the postprocessor, dealing not only with the additional joints but also with the redundancy due to the symmetry on the milling tool. The use of these redundancies is optimized by adjusting two performance criterion vectors related to both singularity avoidance and maintenance of a preferred reference posture, as secondary tasks to be done during the path tracking. In addition, two proper fuzzy inference engines actively adjust the weight of each joint in these tasks. The postprocessor is validated in a real prototyping of a Valencian Falla.This research is partially supported by the Technical University of Valencia (PAID-00-09), project PROMETEO 2009/063 of Generalitat Valenciana and research project DPI2009-14744-C03-01 of the Spanish Government.Andrés De La Esperanza, FJ.; Gracia Calandin, LI.; Tornero Montserrat, J. (2012). Implementation and testing of a CAM postprocessor for an industrial redundant workcell with evaluation of several fuzzified Redundancy Resolution Schemes. Robotics and Computer-Integrated Manufacturing. 28(2):265-274. https://doi.org/10.1016/j.rcim.2011.09.008S26527428

    A sparsity-based method for fault-tolerant manipulation of a redundant robot

    Get PDF
    As an important part of the manufacturing industry, redundant robots can undertake heavy and tough tasks, which human operators are difficult to sustain. Such onerous and repetitive industrial manipulations, that is, positioning and carrying, impose heavy burdens on the load bearing for redundancy robots' joints. Under the circumstances of long-term and intense industrial operations, joints of redundant robots are conceivably to fall into functional failure, which may possibly cause abrupt joint lock or freeze at unknown time instants. Therefore, task accuracy by end-effectors tends to diminish considerably and gradually because of broken-down joints. In this paper, a sparsity-based method for fault-tolerant motion planning of redundant robots is provided for the first time. The developed fault-tolerant redundancy resolution approach is defined as L1-norm based optimization with immediate variables involved to avoid discontinuity in the dynamic solution process. Meanwhile, those potential faulty joint(s) can be located by the designed fault observer with the proposed fault-diagnosis algorithm. The proposed fault-tolerant motion planning method with fault diagnosis is dynamically optimized by resultant primal dual neural networks with provable convergence. Moreover, the sparsity of joint actuation by the proposed method can be enhanced by around 43.87% and 36.51%, respectively, for tracking circle and square paths. Simulation and experimental findings on a redundant robot (KUKA iiwa) prove the efficacy of the developed defect tolerant approach based on sparsity

    A Cartesian Space Approach to Teleoperate a Slave Robot with a Kinematically Dissimilar Redundant Manipulator

    Get PDF
    Due to the inability of humans to interact with certain unstructured environments,telemanipulation of robots have gained immense importance. One of the primary tasks in telemanipulating robots remotely, is the effective manipulation of the slave robot using the master manipulator. Ideally a kinematic replica of the slave manipulator is used as the master to provide a joint-to-joint control to the slave. This research uses the 7-DOF Whole Arm Manipulator© (WAM) as the master manipulator and a 6-DOF Titan as the slave manipulator. Due to the kinematic dissimilarity between the two, a Cartesian space position mapping technique is adapted in which the slave is made to follow the same trajectory as the end effector of the master with respect to its reference frame. The main criterion in undertaking this mapping approach is to provide a convenient region of operation to the human operator. Various methods like pseudo inverse, Jacobian transpose and Damped least squares have been used to perform the inverse kinematics for the Titan. Joint limit avoidance and obstacle avoidance constraints were used to perform the inverse kinematics for the WAM and thereby remove the redundancy. Finally a joint volume limitation constraint (JVLC) was adopted which aims at providing the operator, a comfortable operational space in union with the master manipulator. Each inverse methodfor the Titan was experimentally tested and the best method identified from thesimulation results and the error analysis. Various experiments were also performed for the constrained inverse kinematics for the WAM and results were simulated. RoboWorks© was used for simulation purposes

    Geometry-aware Manipulability Learning, Tracking and Transfer

    Full text link
    Body posture influences human and robots performance in manipulation tasks, as appropriate poses facilitate motion or force exertion along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be designed according to different task requirements, such as tracking a desired position or apply a specific force. In this context, this paper presents a novel \emph{manipulability transfer} framework, a method that allows robots to learn and reproduce manipulability ellipsoids from expert demonstrations. The proposed learning scheme is built on a tensor-based formulation of a Gaussian mixture model that takes into account that manipulability ellipsoids lie on the manifold of symmetric positive definite matrices. Learning is coupled with a geometry-aware tracking controller allowing robots to follow a desired profile of manipulability ellipsoids. Extensive evaluations in simulation with redundant manipulators, a robotic hand and humanoids agents, as well as an experiment with two real dual-arm systems validate the feasibility of the approach.Comment: Accepted for publication in the Intl. Journal of Robotics Research (IJRR). Website: https://sites.google.com/view/manipulability. Code: https://github.com/NoemieJaquier/Manipulability. 24 pages, 20 figures, 3 tables, 4 appendice

    Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas

    Full text link
    The main interest of this thesis consists of the study and implementation of postprocessors to adapt the toolpath generated by a Computer Aided Manufacturing (CAM) system to a complex robotic workcell of eight joints, devoted to the rapid prototyping of 3D CAD-defined products. It consists of a 6R industrial manipulator mounted on a linear track and synchronized with a rotary table. To accomplish this main objective, previous work is required. Each task carried out entails a methodology, objective and partial results that complement each other, namely: - It is described the architecture of the workcell in depth, at both displacement and joint-rate levels, for both direct and inverse resolutions. The conditioning of the Jacobian matrix is described as kinetostatic performance index to evaluate the vicinity to singular postures. These ones are analysed from a geometric point of view. - Prior to any machining, the additional external joints require a calibration done in situ, usually in an industrial environment. A novel Non-contact Planar Constraint Calibration method is developed to estimate the external joints configuration parameters by means of a laser displacement sensor. - A first control is originally done by means of a fuzzy inference engine at the displacement level, which is integrated within the postprocessor of the CAM software. - Several Redundancy Resolution Schemes (RRS) at the joint-rate level are compared for the configuration of the postprocessor, dealing not only with the additional joints (intrinsic redundancy) but also with the redundancy due to the symmetry on the milling tool (functional redundancy). - The use of these schemes is optimized by adjusting two performance criterion vectors related to both singularity avoidance and maintenance of a preferred reference posture, as secondary tasks to be done during the path tracking. Two innovative fuzzy inference engines actively adjust the weight of each joint in these tasks.Andrés De La Esperanza, FJ. (2011). Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10627Palanci

    On Increasing the Automation Level of Heavy-Duty Hydraulic Manipulators with Condition Monitoring of the Hydraulic System and Energy-Optimised Redundancy Resolution

    Get PDF
    Hydraulic manipulators on mobile machines are predominantly used for excavation and lifting applications at construction sites and for heavy-duty material handling in the forest industry due to their superior power-density and rugged nature. These manipulators are conventionally open-loop controlled by human operators who are sufficiently skilled to operate the machines. However, in the footsteps of pioneering original equipment manufacturers (OEMs) and to keep up with the intensifying demand for innovation, more and more mobile machine OEMs have a major interest in significantly increasing the automation level of their hydraulic manipulators and improving the operation of manipulators. In this thesis, robotic software-based functionalities in the form of modelbased condition monitoring and energy-optimal redundancy resolution which facilitate increased automation level of hydraulic manipulators are proposed.A condition monitoring system generally consists of software modules and sensors which co-operate harmonically and monitor the hydraulic system’s health in real-time based on an indirect measure of this system’s health. The premise is that when this condition monitoring system recognises that the system’s health has deteriorated past a given threshold (in other words, when a minor fault is detected, such as a slowly increasing internal leakage of the hydraulic cylinder), the condition monitoring module issues an alarm to warn the system operator of the malfunction, and the module could ideally diagnose the fault cause. In addition, when faced with severe faults, such as an external leakage or an abruptly increasing internal leakage in the hydraulic system, an alarm from the condition monitoring system ensures that the machine is quickly halted to prevent any further damage to the machine or its surroundings.The basic requirement in the design of such a condition monitoring system is to make sure that this system is robust and fault-sensitive. These properties are difficult to achieve in complex mobile hydraulic systems on hydraulic manipulators due to the modelling uncertainties affecting these systems. The modelling uncertainties affecting mobile hydraulic systems are specific compared with many other types of systems and are large because of the hydraulic system complexities, nonlinearities, discontinuities and inherently time-varying parameters. A feasible solution to this modelling uncertainty problem would be to either attenuate the effect of modelling errors on the performance of model-based condition monitoring or to develop improved non-model-based methods with increased fault-sensitivity. In this research work, the former model-based approach is taken. Adaptation of the model residual thresholds based on system operating points and reliable, load-independent system models are proposed as integral parts of the condition monitoring solution to the modelling uncertainty problem. These proposed solutions make the realisation of condition monitoring solutions more difficult on heavy-duty hydraulic manipulators compared with fixed-load manipulators, for example. These solutions are covered in detail in a subset of the research publications appended to this thesis.There is wide-spread interest from hydraulic manipulator OEMs in increasing the automation level of their hydraulic manipulators. Most often, this interest is related to semi-automation of repetitive work cycles to improve work productivity and operator workload circumstances. This robotic semi-automated approach involves resolving the kinematic redundancy of hydraulic manipulators to obtain motion references for the joint controller to enable desirable closed-loop controlled motions. Because conventional redundancy resolutions are usually sub-optimal at the hydraulic system level, a hydraulic energy-optimised, global redundancy resolution is proposed in this thesis for the first time. Kinematic redundancy is resolved energy optimally from the standpoint of the hydraulic system along a prescribed path for a typical 3-degrees-of-freedom (3-DOF) and 4-DOF hydraulic manipulator. Joint motions are also constrained based on the actuators’ position, velocity and acceleration bounds in hydraulic manipulators in the proposed solution. This kinematic redundancy resolution topic is discussed in the last two research papers. Overall, both designed manipulator features, condition monitoring and energy-optimised redundancy resolution, are believed to be essential for increasing the automation of hydraulic manipulators
    corecore