414 research outputs found

    High level synthesis of memory architectures

    Get PDF

    N-variant Hardware Design

    Get PDF
    The emergence of lightweight embedded devices imposes stringent constraints on the area and power of the circuits used to construct them. Meanwhile, many of these embedded devices are used in applications that require diversity and flexibility to make them secure and adaptable to the fluctuating workload or variable fabric. While field programmable gate arrays (FPGAs) provide high flexibility, the use of application specific integrated circuits (ASICs) to implement such devices is more appealing because ASICs can currently provide an order of magnitude less area and better performance in terms of power and speed. My proposed research introduces the N-variant hardware design methodology that adds the sufficient flexibility needed by such devices while preserving the performance and area advantages of using ASICs. The N-variant hardware design embeds different variants of the design control part on the same IC to provide diversity and flexibility. Because the control circuitry usually represents a small fraction of the whole circuit, using multiple versions of the control circuitry is expected to have a low overhead. The objective of my thesis is to formulate a method that provides the following advantages: (i) ease of integration in the current ASIC design flow, (ii) minimal impact on the performance and area of the ASIC design, and (iii) providing a wide range of applications for hardware security and tuning the performance of chips either statically (e.g., post-silicon optimization) or dynamically (at runtime). This is achieved by adding diversity at two orthogonal levels: (i) state space diversity, and (ii) scheduling diversity. State space diversity expands the state space of the controller. Using state space diversity, we introduce an authentication mechanism and the first active hardware metering schemes. On the other hand, scheduling diversity is achieved by embedding different control schedules in the same design. The scheduling diversity can be spatial, temporal, or a hybrid of both methods. Spatial diversity is achieved by implementing multiple control schedules that use various parts of the chip at different rates. Temporal diversity provides variants of the controller that can operate at unequal speeds. A hybrid of both spatial and temporal diversities can also be implemented. Scheduling diversity is used to add the flexibility to tune the performance of the chip. An application of the thermal management of the chip is demonstrated using scheduling diversity. Experimental results show that the proposed method is easy to integrate in the current ASIC flow, has a wide range of applications, and incurs low overhead

    Fast algorithms for retiming large digital circuits

    Get PDF
    The increasing complexity of VLSI systems and shrinking time to market requirements demand good optimization tools capable of handling large circuits. Retiming is a powerful transformation that preserves functionality, and can be used to optimize sequential circuits for a wide range of objective functions by judiciously relocating the memory elements. Leiserson and Saxe, who introduced the concept, presented algorithms for period optimization (minperiod retiming) and area optimization (minarea retiming). The ASTRA algorithm proposed an alternative view of retiming using the equivalence between retiming and clock skew optimization;The first part of this thesis defines the relationship between the Leiserson-Saxe and the ASTRA approaches and utilizes it for efficient minarea retiming of large circuits. The new algorithm, Minaret, uses the same linear program formulation as the Leiserson-Saxe approach. The underlying philosophy of the ASTRA approach is incorporated to reduce the number of variables and constraints in this linear program. This allows minarea retiming of circuits with over 56,000 gates in under fifteen minutes;The movement of flip-flops in control logic changes the state encoding of finite state machines, requiring the preservation of initial (reset) states. In the next part of this work the problem of minimizing the number of flip-flops in control logic subject to a specified clock period and with the guarantee of an equivalent initial state, is formulated as a mixed integer linear program. Bounds on the retiming variables are used to guarantee an equivalent initial state in the retimed circuit. These bounds lead to a simple method for calculating an equivalent initial state for the retimed circuit;The transparent nature of level sensitive latches enables level-clocked circuits to operate faster and require less area. However, this transparency makes the operation of level-clocked circuits very complex, and optimization of level-clocked circuits is a difficult task. This thesis also presents efficient algorithms for retiming large level-clocked circuits. The relationship between retiming and clock skew optimization for level-clocked circuits is defined and utilized to develop efficient retiming algorithms for period and area optimization. Using these algorithms a circuit with 56,000 gates could be retimed for minimum period in under twenty seconds and for minimum area in under 1.5 hours

    Advanced Algorithms for VLSI: Statistical Circuit Optimization and Cyclic Circuit Analysis

    Get PDF
    This work focuses on two emerging fields in VLSI. The first is use of statistical formulations to tackle one of the classical problems in VLSI design and analysis domains, namely gate sizing. The second is on analysis of nontraditional digital systems in the form of cyclic combinational circuits. In the first part, a new approach for enhancing the process-variation tolerance of digital circuits is described. We extend recent advances in statistical timing analysis into an optimization framework. Our objective is to reduce the performance variance of a technology-mapped circuit where delays across elements are represented by random variables which capture the manufacturing variations. We introduce the notion of statistical critical paths, which account for both means and variances of performance variation. An optimization engine is used to size gates with a goal of reducing the timing variance along the statistical critical paths. Circuit optimization is carried out using a gain-based gate sizing algorithm that terminates when constraints are satisfied or no further improvements can be made. We show optimization results that demonstrate an average of 72% reduction in performance variation at the expense of average 20% increase in design area. In the second part, we tackle the problem of analyzing cyclic circuits. Compiling high-level hardware languages can produce circuits containing combinational cycles that can never be sensitized. Such circuits do have well-defined functional behavior, but wreak havoc with most tools, which assume acyclic combinational logic. As such, some sort of cycle-removal step is usually necessary. We present an algorithm able to quickly and exactly characterize all combinational behavior of a cyclic circuit. It used a combination of explicit and implicit methods to compute input patterns that make the circuit behave combinationally. This can be used to restructure the circuit into an acyclic equivalent, report errors, or as an optimization aid. Experiments show our algorithm runs several orders of magnitude faster than existing ones on real-life cyclic circuits, making it useful in practice

    The Second NASA Formal Methods Workshop 1992

    Get PDF
    The primary goal of the workshop was to bring together formal methods researchers and aerospace industry engineers to investigate new opportunities for applying formal methods to aerospace problems. The first part of the workshop was tutorial in nature. The second part of the workshop explored the potential of formal methods to address current aerospace design and verification problems. The third part of the workshop involved on-line demonstrations of state-of-the-art formal verification tools. Also, a detailed survey was filled in by the attendees; the results of the survey are compiled

    Communication, Affect, & Learning in the Classroom

    Get PDF
    The purpose of the handbook was to synthesize the first three decades of research in instructional communication into a single volume that could help both researchers and instructors understand the value of communication in the instructional process.Preface1.Teaching As a Communication Process The Instructional Communication Process The Teacher The Content The Instructional Strategy The Student The Feedback/Evaluation The Learning Environment/Instructional Context Kibler’s Model of Instruction The ADDIE Model of Instructional Design2.Communicating With Instructional Objectives Why Some Teachers Resent Objectives The Value of Objectives What Objectives Should Communicate3.Instructional Communication Strategies The Teacher As a Speaker The Teacher As a Moderator The Teacher As a Trainer The Teacher As a Manager The Teacher As a Coordinator & Innovator4.Communication, Affect, and Student Needs Measuring Student Affect Basic Academic Needs of Students Traditional Interpersonal Need Models Outcomes of Meeting Student Needs5.Learning Styles What is Learning Style? Dimensions of Learning Style and Their Assessment Matching, Bridging, and Style-Flexing6.Classroom Anxieties and Fears Communication Apprehension Receiver Apprehension Writing Apprehension Fear of Teacher Evaluation Apprehension Classroom Anxiety Probable Causes of Classroom Anxiety Communication Strategies for Reducing Classroom Anxiety7.Communication And Student Self-Concept Student Self-Concept: Some Definitions Characteristics of the Self Development of Student Self-Concept Dimensions of Student Self-Concept Self-Concept and Academic Achievement Effects of Self-Concept on Achievement Poker Chip Theory of Learning Communication Strategies for Nurturing and Building Realistic Student Self-Concept8.Instructional Assessment:Feedback,Grading, and Affect Defining the Assessment Process Evaluative Feedback Descriptive Feedback Assessment and Affect Competition and Cooperation in Learning Environments9.Traditional and Mastery Learning Systems Traditional Education Systems Mastery Learning Modified Mastery Learning10.Student Misbehavior and Classroom Management Why Students Misbehave Categories of Student Behaviors Students’ Effects on Affect in the Classroom Communication, Affect, and Classroom Management Communication Techniques for Increasing or Decreasing Student Behavior11.Teacher Misbehaviors and Communication Why Teachers Misbehave Common Teacher Misbehaviors Implications for the Educational Systems12.Teacher Self-Concept and Communication Dimensions of Teacher Self-Concept Development of Teacher Self-Concept Strategies for Increasing Teacher Self-Concept13.Increasing Classroom Affect Through Teacher Communication Style Communicator Style Concept Types of Communicator Styles Teacher Communication Style Teacher Communicator Behaviors That Build Affect14.Teacher Temperament in the Classroom Four Personality Types Popular Sanguine Perfect Melancholy Powerful Choleric Peaceful Phlegmatic Personality Blends15.Teacher Communication: Performance and Burnout Teaching: A Multifaceted Job Roles of an Instructional Manager Teacher Burnout Symptoms of Teacher Burnout Causes of Teacher Burnout Methods for Avoiding Burnout Mentoring to Prevent BurnoutAppendix A To Mrs. Russell: Without You This Never Would Have HappenedGlossaryInde

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry
    • …
    corecore