634 research outputs found

    Enhancement in Reliability for Multi-core system consisting of One Instruction Cores

    Full text link
    Rapid CMOS device size reduction resulted in billions of transistors on a chip have led to integration of many cores leading to many challenges such as increased power dissipation, thermal dissipation, occurrence of transient faults and permanent faults. The mitigation of transient faults and permanent faults at the core level has become an important design parameter in a multi-core scenario. Core level techniques is a redundancy-based fault mitigation technique that improves the lifetime reliability of multi-core systems. In an asymmetric multi-core system, the smaller cores provide fault tolerance to larger cores is a core level fault mitigation technique that has gained momentum and focus from many researchers. The paper presents an economical, asymmetric multi-core system with one instruction cores (MCSOIC). The term Hardware Cost Estimation signifies power and area estimation for MCS-OIC. In MCSOIC, OIC is a warm standby redundant core. OICs provide functional support to conventional cores for shorter periods of time. To evaluate the idea, different configurations of MCSOIC is synthesized using FPGA and ASIC. The maximum power overhead and maximum area overhead are 0.46% and 11.4% respectively. The behavior of OICs in MCS-OIC is modelled using a One-Shot System (OSS) model for reliability analysis. The model parameters namely, readiness, wakeup probability and start-up-strategy for OSS are mapped to the multi-core systems with OICs. Expressions for system reliability is derived. System reliability is estimated for special cases.Comment: 46 page

    Some stochastic problems in reliability and inventory

    Get PDF
    An attempt is made in this thesis to study some stochastic models of both reliability and inventory systems with reference to the following aspects: (i) the confidence limits with the introduction of common-cause failures. (ii) the Erlangian repair time distributions. (iii) the product interactions and demand interactions. (iv) the products are perishable. This thesis contains six chapters. Chaper 1 is introductory in nature and gives a review of the literature and the techniques used in the analysis of reliability systems. Chapter 2 is a study of component common-cause failure systems. Such failures may greatly reduce the reliability indices. Two models of such systems (series and parallel) have been studied in this chapter. The expressions such as, reliability, availability and expected number of repairs have been obtained. The confidence limits for the steady state availability of these two systems have also been obtained. A numerical example illustrates the results. A 100 (1 - a) % confidence limit for the steady state availability of a two unit hot and warm standby system has been studied, when the failure of an online unit is constant and the repair time of a failed unit is Erlangian. The general introduction of various inventory systems and the techniques used in the analysis of such systems have been explained in chapter 4. Chapter 5 provides two models of two component continuous review inventory systems. Here we assume that demand occurs according to a poisson process and that a demand can be satisfied only if both the components are available in inventory. Back-orders are not permitted. The two components are bought from outside suppliers and are replenished according to (s, S) policy. In model 1 we assume that the lead-time of the components follow an exponential distribution. By identifying the inventory level as a Markov process, a system of difference-differential equations at any time and the steady-state for the state of inventory level are obtained. Tn model 2 we assume that the lead-time distribution of one product is arbitrary and the other is exponential. Identifying the underlying process as a semi-regenerative process we find the stationary distribution of the inventory level. For both these models, we find out the performance measures such as the mean stationary rate of the number of lost demands, the demands satisfied and the reorders made. Numerical examples for the two models are also considered. Chaper 6 is devoted to the study of a two perishable product inventory model in which the products are substitutable. The perishable rates of product 1 and product 2 are two different constants. Demand for product 1 and product 2 follow two independent Poisson processes. For replenishment of product 1 (s, S) ordering policy is followed and the associated lead-time is arbitrary. Replenishment of product 2 is instantaneous. A demand for product 1 which occurs during its stock-out period can be substituted by product 2 with some probability. Expressions are derived for the stationary distribution of the inventor}' level by identifying the underlying stochastic process as a semi-regenerative process. An expression for the expected profit rate is obtained. A numerical illustration is provided and an optimal reordering level maximising the profit rate is also studied. To sum up, this thesis is an effort to improve the state the of art of (i) complex reliability systems and their estimation study (ii) muitiproduct inventory systems. The salient features of the thesis are: (i) Analysis of a two-component reliability system with common-cause failures. (ii) Estimation study of a complex system in which the repair time for both hot standby and warm standby systems are assumed to be Eriangian. (iii) A multi-product continuous review inventory system with product interaction, with a (s, S) policy. (iv) Introduction of the concept of substitutability for products. (v) Derivation of expressions for various statistical measures. (vi) Effective use of the regeneration point technique in deriving various measures for both reliability and inventory systems. (vii) Illustration of the various results by extensive numerical work. (vii) Consideration of relevant optimization problems.Mathematical SciencesPhD (Statistics

    Report on the design requirements for reactor power systems for manned earth orbital applications Final report

    Get PDF
    Reactor power systems design requirements for manned Earth orbital application

    Voyager capsule phase B. Volume III - Surface laboratory system. Part B1 - Alternatives, analyses, selection Final report

    Get PDF
    Voyager capsule surface laboratory system - mission analysis, system functional requirements, and design selection and alternative

    Lifetime reliability of multi-core systems: modeling and applications.

    Get PDF
    Huang, Lin.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (leaves 218-232).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Preface --- p.1Chapter 1.2 --- Background --- p.5Chapter 1.3 --- Contributions --- p.6Chapter 1.3.1 --- Lifetime Reliability Modeling --- p.6Chapter 1.3.2 --- Simulation Framework --- p.7Chapter 1.3.3 --- Applications --- p.9Chapter 1.4 --- Thesis Outline --- p.10Chapter I --- Modeling --- p.12Chapter 2 --- Lifetime Reliability Modeling --- p.13Chapter 2.1 --- Notation --- p.13Chapter 2.2 --- Assumption --- p.16Chapter 2.3 --- Introduction --- p.16Chapter 2.4 --- Related Work --- p.19Chapter 2.5 --- System Model --- p.21Chapter 2.5.1 --- Reliability of A Surviving Component --- p.22Chapter 2.5.2 --- Reliability of a Hybrid k-out-of-n:G System --- p.26Chapter 2.6 --- Special Cases --- p.31Chapter 2.6.1 --- Case I: Gracefully Degrading System --- p.31Chapter 2.6.2 --- Case II: Standby Redundant System --- p.33Chapter 2.6.3 --- Case III: l-out-of-3:G System with --- p.34Chapter 2.7 --- Numerical Results --- p.37Chapter 2.7.1 --- Experimental Setup --- p.37Chapter 2.7.2 --- Experimental Results and Discussion --- p.40Chapter 2.8 --- Conclusion --- p.43Chapter 2.9 --- Appendix --- p.44Chapter II --- Simulation Framework --- p.47Chapter 3 --- AgeSim: A Simulation Framework --- p.48Chapter 3.1 --- Introduction --- p.48Chapter 3.2 --- Preliminaries and Motivation --- p.51Chapter 3.2.1 --- Prior Work on Lifetime Reliability Analysis of Processor- Based Systems --- p.51Chapter 3.2.2 --- Motivation of This Work --- p.53Chapter 3.3 --- The Proposed Framework --- p.54Chapter 3.4 --- Aging Rate Calculation --- p.57Chapter 3.4.1 --- Lifetime Reliability Calculation --- p.58Chapter 3.4.2 --- Aging Rate Extraction --- p.60Chapter 3.4.3 --- Discussion on Representative Workload --- p.63Chapter 3.4.4 --- Numerical Validation --- p.65Chapter 3.4.5 --- Miscellaneous --- p.66Chapter 3.5 --- Lifetime Reliability Model for MPSoCs with Redundancy --- p.68Chapter 3.6 --- Case Studies --- p.70Chapter 3.6.1 --- Dynamic Voltage and Frequency Scaling --- p.71Chapter 3.6.2 --- Burst Task Arrival --- p.75Chapter 3.6.3 --- Task Allocation on Multi-Core Processors --- p.77Chapter 3.6.4 --- Timeout Policy on Multi-Core Processors with Gracefully Degrading Redundancy --- p.78Chapter 3.7 --- Conclusion --- p.79Chapter 4 --- Evaluating Redundancy Schemes --- p.83Chapter 4.1 --- Introduction --- p.83Chapter 4.2 --- Preliminaries and Motivation --- p.85Chapter 4.2.1 --- Failure Mechanisms --- p.85Chapter 4.2.2 --- Related Work and Motivation --- p.86Chapter 4.3 --- Proposed Analytical Model for the Lifetime Reliability of Proces- sor Cores --- p.88Chapter 4.3.1 --- "Impact of Temperature, Voltage, and Frequency" --- p.88Chapter 4.3.2 --- Impact of Workloads --- p.92Chapter 4.4 --- Lifetime Reliability Analysis for Multi-core Processors with Vari- ous Redundancy Schemes --- p.95Chapter 4.4.1 --- Gracefully Degrading System (GDS) --- p.95Chapter 4.4.2 --- Processor Rotation System (PRS) --- p.97Chapter 4.4.3 --- Standby Redundant System (SRS) --- p.98Chapter 4.4.4 --- Extension to Heterogeneous System --- p.99Chapter 4.5 --- Experimental Methodology --- p.101Chapter 4.5.1 --- Workload Description --- p.102Chapter 4.5.2 --- Temperature Distribution Extraction --- p.102Chapter 4.5.3 --- Reliability Factors --- p.103Chapter 4.6 --- Results and Discussions --- p.103Chapter 4.6.1 --- Wear-out Rate Computation --- p.103Chapter 4.6.2 --- Comparison on Lifetime Reliability --- p.105Chapter 4.6.3 --- Comparison on Performance --- p.110Chapter 4.6.4 --- Comparison on Expected Computation Amount --- p.112Chapter 4.7 --- Conclusion --- p.118Chapter III --- Applications --- p.119Chapter 5 --- Task Allocation and Scheduling for MPSoCs --- p.120Chapter 5.1 --- Introduction --- p.120Chapter 5.2 --- Prior Work and Motivation --- p.122Chapter 5.2.1 --- IC Lifetime Reliability --- p.122Chapter 5.2.2 --- Task Allocation and Scheduling for MPSoC Designs --- p.124Chapter 5.3 --- Proposed Task Allocation and Scheduling Strategy --- p.126Chapter 5.3.1 --- Problem Definition --- p.126Chapter 5.3.2 --- Solution Representation --- p.128Chapter 5.3.3 --- Cost Function --- p.129Chapter 5.3.4 --- Simulated Annealing Process --- p.130Chapter 5.4 --- Lifetime Reliability Computation for MPSoC Embedded Systems --- p.133Chapter 5.5 --- Efficient MPSoC Lifetime Approximation --- p.138Chapter 5.5.1 --- Speedup Technique I - Multiple Periods --- p.139Chapter 5.5.2 --- Speedup Technique II - Steady Temperature --- p.139Chapter 5.5.3 --- Speedup Technique III - Temperature Pre- calculation --- p.140Chapter 5.5.4 --- Speedup Technique IV - Time Slot Quantity Control --- p.144Chapter 5.6 --- Experimental Results --- p.144Chapter 5.6.1 --- Experimental Setup --- p.144Chapter 5.6.2 --- Results and Discussion --- p.146Chapter 5.7 --- Conclusion and Future Work --- p.152Chapter 6 --- Energy-Efficient Task Allocation and Scheduling --- p.154Chapter 6.1 --- Introduction --- p.154Chapter 6.2 --- Preliminaries and Problem Formulation --- p.157Chapter 6.2.1 --- Related Work --- p.157Chapter 6.2.2 --- Problem Formulation --- p.159Chapter 6.3 --- Analytical Models --- p.160Chapter 6.3.1 --- Performance and Energy Models for DVS-Enabled Pro- cessors --- p.160Chapter 6.3.2 --- Lifetime Reliability Model --- p.163Chapter 6.4 --- Proposed Algorithm for Single-Mode Embedded Systems --- p.165Chapter 6.4.1 --- Task Allocation and Scheduling --- p.165Chapter 6.4.2 --- Voltage Assignment for DVS-Enabled Processors --- p.168Chapter 6.5 --- Proposed Algorithm for Multi-Mode Embedded Systems --- p.169Chapter 6.5.1 --- Feasible Solution Set --- p.169Chapter 6.5.2 --- Searching Procedure for a Single Mode --- p.171Chapter 6.5.3 --- Feasible Solution Set Identification --- p.171Chapter 6.5.4 --- Multi-Mode Combination --- p.177Chapter 6.6 --- Experimental Results --- p.178Chapter 6.6.1 --- Experimental Setup --- p.178Chapter 6.6.2 --- Case Study --- p.180Chapter 6.6.3 --- Sensitivity Analysis --- p.181Chapter 6.6.4 --- Extensive Results --- p.183Chapter 6.7 --- Conclusion --- p.185Chapter 7 --- Customer-Aware Task Allocation and Scheduling --- p.186Chapter 7.1 --- Introduction --- p.186Chapter 7.2 --- Prior Work and Problem Formulation --- p.188Chapter 7.2.1 --- Related Work and Motivation --- p.188Chapter 7.2.2 --- Problem Formulation --- p.191Chapter 7.3 --- Proposed Design-Stage Task Allocation and Scheduling --- p.192Chapter 7.3.1 --- Solution Representation and Moves --- p.193Chapter 7.3.2 --- Cost Function --- p.196Chapter 7.3.3 --- Impact of DVFS --- p.198Chapter 7.4 --- Proposed Algorithm for Online Adjustment --- p.200Chapter 7.4.1 --- Reliability Requirement for Online Adjustment --- p.201Chapter 7.4.2 --- Analytical Model --- p.203Chapter 7.4.3 --- Overall Flow --- p.204Chapter 7.5 --- Experimental Results --- p.205Chapter 7.5.1 --- Experimental Setup --- p.205Chapter 7.5.2 --- Results and Discussion --- p.207Chapter 7.6 --- Conclusion --- p.211Chapter 7.7 --- Appendix --- p.211Chapter 8 --- Conclusion and Future Work --- p.214Chapter 8.1 --- Conclusion --- p.214Chapter 8.2 --- Future Work --- p.215Bibliography --- p.23

    AVAILABILITY MODEL FOR A COG EN ERA TION SYSTEM SUBJECTED TO REDUNDANCY

    Get PDF
    The main emphasis of cogeneration system is to provide electrical energy, steam, hot and chilled water to their customers. The failure of this system could lead to the disruption of the supply of these items. If failure occurs, it will result in reduction of availability as well as economic loss. In order to mitigate such effects, it is required to study availability of the cogeneration system together with associated economic loss. However, there are factors which affect the availability assessment of the cogeneration system. These factors are system redundancy and limitation of maintenance data. Use of redundancy in cogeneration helps to achieve higher availability but the operation cost of redundancy is expensive due to maximum demand charge cost. Thus, it is important to consider the economic effect of redundancy

    Improving the profitability, availability and condition monitoring of FPSO terminals

    Get PDF
    The main focus of this study is to improve the profitability, availability and condition monitoring of Liquefied Natural Gas (LNG) Floating Production Storage and Offloading platforms (FPSOs). Propane pre-cooled, mixed refrigerant (C3MR) liquefaction is the key process in the production of LNG on FPSOs. LNG liquefaction system equipment has the highest failure rates among the other FPSO equipment, and thus the highest maintenance cost. Improvements in the profitability, availability and condition monitoring were made in two ways: firstly, by making recommendations for the use of redundancy in order to improve system reliability (and hence availability); and secondly, by developing an effective condition-monitoring algorithm that can be used as part of a condition-based maintenance system. C3MR liquefaction system reliability modelling was undertaken using the time-dependent Markov approach. Four different system options were studied, with varying degrees of redundancy. The results of the reliability analysis indicated that the introduction of a standby liquefaction system could be the best option for liquefaction plants in terms of reliability, availability and profitability; this is because the annual profits of medium-sized FPSOs (3MTPA) were estimated to increase by approximately US296million,risingfromaboutUS296 million, rising from about US1,190 million to US1,485.98million,ifredundancywereimplemented.ThecostbenefitanalysisresultswerebasedontheaverageLNGprices(US1,485.98 million, if redundancy were implemented. The cost-benefit analysis results were based on the average LNG prices (US500/ton) in 2013 and 2014. Typically, centrifugal turbines, compressors and blowers are the main items of equipment in LNG liquefaction plants. Because centrifugal equipment tops the FPSO equipment failure list, a Condition Monitoring (CM) system for such equipment was proposed and tested to reduce maintenance and shutdown costs, and also to reduce flaring. The proposed CM system was based on a novel FFT-based segmentation, feature selection and fault identification algorithm. A 20 HP industrial air compressor system with a rotational speed of 15,650 RPM was utilised to experimentally emulate five different typical centrifugal equipment machine conditions in the laboratory; this involved training and testing the proposed algorithm with a total of 105 datasets. The fault diagnosis performance of the algorithm was compared with other methods, namely standard FFT classifiers and Neural Network. A sensitivity analysis was performed in order to determine the effect of the time length and position of the signals on the diagnostic performance of the proposed fault identification algorithm. The algorithm was also checked for its ability to identify machine degradation using datasets for which the algorithm was not trained. Moreover, a characterisation table that prioritises the different fault detection techniques and signal features for the diagnosis of centrifugal equipment faults, was introduced to determine the best fault identification technique and signal feature. The results suggested that the proposed automated feature selection and fault identification algorithm is effective and competitive as it yielded a fault identification performance of 100% in 3.5 seconds only in comparison to 57.2 seconds for NN. The sensitivity analysis showed that the algorithm is robust as its fault identification performance was affected by neither the time length nor the position of signals. The characterisation study demonstrated the effectiveness of the AE spectral feature technique over the fault identification techniques and signal features tested in the course of diagnosing centrifugal equipment faults. Moreover, the algorithm performed well in the identification of machine degradation. In summary, the results of this study indicate that the proposed two-pronged approach has the potential to yield a highly reliable LNG liquefaction system with significantly improved availability and profitability profiles

    Mathematical Modeling and Simulation in Mechanics and Dynamic Systems

    Get PDF
    The present book contains the 16 papers accepted and published in the Special Issue “Mathematical Modeling and Simulation in Mechanics and Dynamic Systems” of the MDPI “Mathematics” journal, which cover a wide range of topics connected to the theory and applications of Modeling and Simulation of Dynamic Systems in different field. These topics include, among others, methods to model and simulate mechanical system in real engineering. It is hopped that the book will find interest and be useful for those working in the area of Modeling and Simulation of the Dynamic Systems, as well as for those with the proper mathematical background and willing to become familiar with recent advances in Dynamic Systems, which has nowadays entered almost all sectors of human life and activity

    Superfluid Helium Tanker (SFHT) study

    Get PDF
    The accomplishments and recommendations of the two-phase Superfluid Helium Tanker (SFHT) study are presented. During the first phase of the study, the emphasis was on defining a comprehensive set of user requirements, establishing SFHT interface parameters and design requirements, and selecting a fluid subsystem design concept. During the second phase, an overall system design concept was constructed based on appropriate analyses and more detailed definition of requirements. Modifications needed to extend the baseline for use with cryogens other than SFHT have been determined, and technology development needs related to the recommended design have been assessed
    corecore