1,049 research outputs found

    Tachyon Condensation on the Elliptic Curve

    Full text link
    We use the framework of matrix factorizations to study topological B-type D-branes on the cubic curve. Specifically, we elucidate how the brane RR charges are encoded in the matrix factors, by analyzing their structure in terms of sections of vector bundles in conjunction with equivariant R-symmetry. One particular advantage of matrix factorizations is that explicit moduli dependence is built in, thus giving us full control over the open-string moduli space. It allows one to study phenomena like discontinuous jumps of the cohomology over the moduli space, as well as formation of bound states at threshold. One interesting aspect is that certain gauge symmetries inherent to the matrix formulation lead to a non-trivial global structure of the moduli space. We also investigate topological tachyon condensation, which enables us to construct, in a systematic fashion, higher-dimensional matrix factorizations out of smaller ones; this amounts to obtaining branes with higher RR charges as composites of ones with minimal charges. As an application, we explicitly construct all rank-two matrix factorizations.Comment: 69p, 6 figs, harvmac; v2: minor change

    Examples of integrable sub-Riemannian geodesic flows

    Get PDF
    Motivated by a paper of Bolsinov and Taimanov DG/9911193 we consider non-holonomic situation and exhibit examples of sub-Riemannian metrics with integrable geodesic flows and positive topological entropy. Moreover the Riemannian examples are obtained as "holonomization" of sub-Riemannian ones. A feature of non-holonomic situation is non-compactness of the phase space. We also exhibit a Liouvulle-integrable Hamiltonian system with topological entropy of all integrals positive.Comment: 21 pages; Answer to the self-posed question is added: Is it possible to construct Liouville-integrable Hamiltonian system with positive topological entropies of all integrals? Yes and we present an exampl

    A Network Coding Approach to Loss Tomography

    Get PDF
    Network tomography aims at inferring internal network characteristics based on measurements at the edge of the network. In loss tomography, in particular, the characteristic of interest is the loss rate of individual links and multicast and/or unicast end-to-end probes are typically used. Independently, recent advances in network coding have shown that there are advantages from allowing intermediate nodes to process and combine, in addition to just forward, packets. In this paper, we study the problem of loss tomography in networks with network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities, and we show that it improves several aspects of tomography including the identifiability of links, the trade-off between estimation accuracy and bandwidth efficiency, and the complexity of probe path selection. We discuss the cases of inferring link loss rates in a tree topology and in a general topology. In the latter case, the benefits of our approach are even more pronounced compared to standard techniques, but we also face novel challenges, such as dealing with cycles and multiple paths between sources and receivers. Overall, this work makes the connection between active network tomography and network coding
    • …
    corecore