150 research outputs found

    Neuroimaging in anxiety disorders

    Get PDF
    Neuroimaging studies have gained increasing importance in validating neurobiological network hypotheses for anxiety disorders. Functional imaging procedures and radioligand binding studies in healthy subjects and in patients with anxiety disorders provide growing evidence of the existence of a complex anxiety network, including limbic, brainstem, temporal, and prefrontal cortical regions. Obviously, “normal anxiety” does not equal “pathological anxiety” although many phenomena are evident in healthy subjects, however to a lower extent. Differential effects of distinct brain regions and lateralization phenomena in different anxiety disorders are mentioned. An overview of neuroimaging investigations in anxiety disorders is given after a brief summary of results from healthy volunteers. Concluding implications for future research are made by the authors

    Brain GABA and Glutamate Concentrations Following Chronic Gabapentin Administration: A Convenience Sample Studied During Early Abstinence From Alcohol.

    Get PDF
    Gabapentin (GBP), a GABA analog that may also affect glutamate (Glu) production, can normalize GABA and Glu tone during early abstinence from alcohol, effectively treating withdrawal symptoms and facilitating recovery. Using in vivo magnetic resonance spectroscopy, we tested the degree to which daily GBP alters regional brain GABA and Glu levels in short-term abstinent alcohol-dependent individuals. Regional metabolite levels were compared between 13 recently abstinent alcohol-dependent individuals who had received daily GBP for at least 1 week (GBP+) and 25 matched alcohol-dependent individuals who had not received GBP (GBP-). Magnetic resonance spectra from up to five different brain regions were analyzed to yield absolute GABA and Glu concentrations. GABA and Glu concentrations in the parieto-occipital cortex were not different between GBP- and GBP+. Glu levels in anterior cingulate cortex, dorsolateral prefrontal cortex, and basal ganglia did not differ between GBP- and GBP+. However, in a subgroup of individuals matched on age, sex, and abstinence duration, GBP+ had markedly lower Glu in the frontal white matter (WM) than GBP-, comparable to concentrations found in light/non-drinking controls. Furthermore, lower frontal WM Glu in GBP+ correlated with a higher daily GBP dose. Daily GBP treatment at an average of 1,600 mg/day for at least 1 week was not associated with altered cortical GABA and Glu concentrations during short-term abstinence from alcohol, but with lower Glu in frontal WM. GBP for the treatment of alcohol dependence may work through reducing Glu in WM rather than increasing cortical GABA

    The GABA transporter 1 (SLC6A1): a novel candidate gene for anxiety disorders

    Get PDF
    Recent evidence suggests that the GABA transporter 1 (GAT-1; SLC6A1) plays a role in the pathophysiology and treatment of anxiety disorders. In order to understand the impact of genetic variation within SLC6A1 on pathological anxiety, we performed a case–control association study with anxiety disorder patients with and without syndromal panic attacks. Using the method of sequential addition of cases, we found that polymorphisms in the 5′ flanking region of SLC6A1 are highly associated with anxiety disorders when considering the severity of syndromal panic attacks as phenotype covariate. Analysing the effect size of the association, we observed a constant increase in the odds ratio for disease susceptibility with an increase in panic severity (OR ~ 2.5 in severely affected patients). Nominally significant association effects were observed considering the entire patient sample. These data indicate a high load of genetic variance within SLC6A1 on pathological anxiety and highlight GAT-1 as a promising target for treatment of anxiety disorders with panic symptoms

    Investigating the long-term stability and neurochemical substrates of TMS and MRS

    Full text link
    La stimulation magnétique transcrânienne (SMT) et la spectroscopie par résonance magnétique (SRM) sont des techniques non-invasives permettant de quantifier l’activité GABAergique et glutamatergique du cerveau. La SMT et la SRM ont plusieurs applications en clinique et en recherche. En effet, ces outils peuvent être utilisés afin de déterminer l’efficacité d’un traitement ou la progression d’un processus pathologique. Cependant, malgré leur utilisation croissante dans le domaine médical, une certaine incertitude demeure quant aux substrats neurochimiques de ces techniques et à la stabilité à long terme des données acquises par SMT et SRM. Donc, dans un premier temps, la stabilité à long terme de plusieurs mesures prises par SMT et par SRM a été étudiée. En second lieu, afin de mieux comprendre quelles composantes du système GABAergique sont ciblées par ces deux techniques, des mesures de SRM et de SMT ont été obtenues après l’administration d’une benzodiazépine, le lorazépam, selon un devis expérimental randomisé, croisé, à double-aveugle et contrôlé par placébo. Deux articles composent cette thèse. Le premier article fait état d’une étude longitudinale, auprès d’adultes en santé, ayant pour but de déterminer la stabilité à long terme des concentrations de GABA et de Glx (glutamate + glutamine) obtenues par SRM ainsi que la stabilité des mesures d’inhibition et de facilitation corticale obtenues par SMT (rMT : seuil moteur au repos, %MSO : pourcentage d’intensité maximale du stimulateur, SICI : inhibition intra-corticale courte, LICI : inhibition intra-corticale longue, ICF : facilitation intra-corticale). Il a été démontré que les niveaux de GABA et de Glx sont stables au cours d’une période de trois mois. Alors que les mesures SMT de seuil moteur au repos, d’excitabilité corticale et de période corticale silencieuse sont stables à travers le temps, l’inhibition corticale à court intervalle et à long intervalle ainsi que la facilitation corticale sont beaucoup plus variables. Le deuxième article vise à comprendre la dissociation dans la sensibilité des mesures de SMT et SRM à refléter différentes facettes de l’activité GABAergique du cortex moteur. L’article porte sur une étude dans laquelle du lorazépam a été administré à des participants adultes en santé selon un devis randomisé, croisé, à double-aveugle et contrôlé par placébo. Des données SRM (GABA et Glx; cortex sensorimoteur et occipital) ainsi que des mesures SMT (cortex moteur) ont été obtenues suivant l’administration de lorazépam (ou de placébo). Il a été démontré que la prise de lorazépam réduisait les niveaux de GABA occipitaux, augmentait l’inhibition corticale et réduisait l’excitabilité du cortex moteur. La prise de médicament n’avait pas d’effet sur les autres mesures obtenues. De plus, il a été trouvé que l’effet du traitement sur l’inhibition corticale dépendait des concentrations endogènes de GABA dans le cortex sensorimoteur; une plus grande concentration de GABA étant prédictive d’une plus grande inhibition corticale suivant la prise de lorazépam. Dans leur ensemble, les résultats provenant des deux articles présentés dans cette thèse permettent de conclure que les mesures SRM des divers neurométabolites sont stables à long terme dans le cortex moteur et pourraient potentiellement servir de marqueurs dans l’évaluation de l’efficacité d’un traitement ou de l’évolution de processus pathologiques. Par contre, bien que certaines mesures SMT soient stables à long terme (rMT, %MSO, CSP), d’autres sont beaucoup plus variables (SICI, LICI, ICF); ainsi, la prudence est conseillée dans l’interprétation de ces mesures lors d’études cliniques. De plus, les effets différents que produit la prise de lorazépam sur les mesures SRM et SMT supportent la théorie selon laquelle les deux techniques n’ont pas les mêmes substrats neurochimiques. En effet, alors que les mesures TMS d’inhibition corticale refléteraient l’activité phasique des récepteurs GABAA, le signal SRM de GABA serait majoritairement intracellulaire et ne représenterait pas la neurotransmission GABAergique.Transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS) are non-invasive techniques that allow the measurement of GABAergic and glutamatergic activity in the brain. TMS and MRS can be used to assess inhibitory and excitatory mechanisms, treatment response or disease presence and progression in vivo. However, despite their growing use in research and medical settings, ambiguity remains regarding their neurochemical substrates and long-term reproducibility. The goal of the present thesis is twofold. First, the long-term stability and reliability of various MRS and TMS measurements, obtained in the motor cortex, was investigated. Second, to better understand which aspects of the GABAergic network are targeted by the two techniques, TMS and MRS measures reflecting cortical inhibition and excitation were obtained following lorazepam administration using a placebo-controlled, double-blind, randomized, crossover design. Two articles comprise this thesis. The first article is a longitudinal assessment of the stability and reliability of MRS-GABA and Glx (glutamate + glutamine) and TMS measures of cortical inhibition and facilitation in the sensorimotor (SMC) cortex of healthy adults. It was determined that MRS-GABA and MRS-Glx are stable over a three-month interval. TMS measures of resting motor threshold (rMT), cortical excitability (% maximum stimulator output; MSO) and cortical silent period (CSP) were also found to be stable and reliable. However, paired-pulse TMS measures such as short-interval cortical inhibition (SICI), long-interval cortical inhibition (LICI) and intracortical facilitation (ICF) had greater variability. The second article aims to understand the differential sensitivity of TMS and MRS with respect to GABAergic activity in the primary motor cortex. It is based on the results and conclusions of a placebo-controlled, double-blind, randomized, crossover study, where benzodiazepine lorazepam was given to healthy adult volunteers. Magnetic resonance spectroscopy (GABA and Glx) was performed in the sensorimotor cortex and occipital cortex (OC). TMS measurements were acquired in the motor cortex only. MRS and TMS measures of cortical inhibition and excitability (rMT, input/output (I/O) curve, SICI, LICI, ICF, CSP) were obtained following lorazepam or placebo administration. Lorazepam was found to decrease occipital GABA concentration, increase motor cortical inhibition and decrease cortical excitability. Lorazepam administration had no effect on other neurometabolites or TMS measurements. The effect of Lorazepam on short-interval cortical inhibition was found to depend on endogenous GABA levels in the SMC; higher GABA concentrations predicted a greater increase in SICI following drug intake. Taken together, the studies presented in this thesis indicate that MRS neurometabolite levels are stable over time and may thus potentially serve as markers for the monitoring of disease progression and treatment response. However, while some TMS measures have good long-term stability (rMT, %MSO, CSP), others are not as reliable nor stable (SICI, LICI, ICF); care must be taken in clinical settings. Furthermore, the differential effects of lorazepam on MRS and TMS measures support the idea that the two techniques probe different aspects of the GABAergic system. Whereas TMS measures of cortical inhibition reflect phasic GABAA receptor activity, MRS-GABA primarily reflects intracellular, non-neurotransmitter metabolic GABA

    IMAGING SPECIFIC ABSORPTION RATE WITH MR THERMOMETRY USING PARAMAGNETIC LANTHANIDE COMPLEXES AND IN VIVO GABA MR SPECTROSCOPY IN MOVEMENT DISORDERS

    Get PDF
    Magnetic Resonance Imaging (MRI) is a popular imaging modality due to its ability to provide excellent soft tissue contrast without exposure to ionizing radiation. It can be used for temperature monitoring (thermometry) as well as for assessing the biochemistry in vivo (MRS). This dissertation focuses separately on the development, application and quantitation issues of these two aspects of MRI
    corecore