23 research outputs found

    Reduction of the error floor of binary fsk by nonlinear frequency discriminators

    Full text link

    Analog-to-digital interface design in wireless receivers

    Get PDF
    As one of the major building blocks in a wireless receiver, the Analog-to-Digital Interface (ADI) provides link and transition between the analog Radio Frequency (RF) frontend and the baseband Digital Signal Processing (DSP) module. The rapid development of the radio technologies raises new design challenges for the receiver ADI implementation. Requirements, such as power consumption optimization, multi-standard compatibility, fast settling capability and wide signal bandwidth capacity, are often encountered in a low voltage ADI design environment. Previous research offers ADI design schemes that emphasize individual merit. A systematic ADI design methodology is, however, not suffciently studied. In this work, the ADI design for two receiver systems are employed as research vehicles to provide solutions for different ADI design issues. A zero-crossing demodulator ADI is designed in the 0.35µm CMOS technology for the Bluetooth receiver to provide fast settling. Architectural level modification improves the process variation and the Local Oscillation (LO) frequency offset immunity of the demodulator. A 16.2dB Signal-to-Noise Ratio (SNR) at 0.1% Bit Error Rate (BER) is achieved with less than 9mW power dissipation in the lab measurement. For ADI in the 802.11b/Bluetooth dual-mode receiver, a configurable time-interleaved pipeline Analog-to-Digital-Converter (ADC) structure is adopted to provide the required multi-standard compatibility. An online digital calibration scheme is also proposed to compensate process variation and mismatching. The prototype chip is fabricated in the 0.25µm BiCMOS technology. Experimentally, an SNR of 60dB and 64dB are obtained under the 802.11b and Bluetooth receiving modes, respectively. The power consumption of the ADI is 20.2mW under the 802.11b receiving mode and 14.8mW under the Bluetooth mode. In this dissertation, each step of the receiver ADI design procedure, from system level optimization to the transistor level implementation and lab measurement, is illustrated in detail. The observations are carefully studied to provide insight on receiver ADI design issues. The ADI design for the Ultra-Wide Band (UWB) receiver is also studied at system level. Potential ADI structure is proposed to satisfy the wide signal bandwidth and high speed requirement for future applications

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    Geodetic Sciences

    Get PDF
    Space geodetic techniques, e.g., global navigation satellite systems (GNSS), Very Long Baseline Interferometry (VLBI), satellite gravimetry and altimetry, and GNSS Reflectometry & Radio Occultation, are capable of measuring small changes of the Earth�s shape, rotation, and gravity field, as well as mass changes in the Earth system with an unprecedented accuracy. This book is devoted to presenting recent results and development in space geodetic techniques and sciences, including GNSS, VLBI, gravimetry, geoid, geodetic atmosphere, geodetic geophysics and geodetic mass transport associated with the ocean, hydrology, cryosphere and solid-Earth. This book provides a good reference for geodetic techniques, engineers, scientists as well as user community

    Multiuser non coherent massive MIMO schemes based on DPSK for future communication systems

    Get PDF
    The explosive usage of rich multimedia content in wireless devices has overloaded the communication networks. Moreover, the fifth generation (5G) of wireless communications involves new requirements in the radio access network (RAN) which require higher network capacities and new capabilities such as ultra-reliable and low-latency communication (URLLC), vehicular communications or augmented reality. All this has encouraged a remarkable spectrum crisis in the RF bands. A need for searching alternative techniques with more spectral efficiency to accommodate the needs of future emerging wireless communications is emerging. In this context, massive MIMO (m-MIMO) systems have been proposed as a promising solution for providing a substantial increase in the network capacity, becoming one of the key enabling technologies for 5G and beyond. m-MIMO provides high spectral- and energy-efficiency thanks to the deployment of a large number of antennas at the BS. However, we have to take into account that the current communication technologies are based on coherent transmission techniques so far, which require the transmission of a huge amount of signaling. This drawback is escalating with the excessive available number of antennas in m-MIMO. Therefore, the differential encoding and non coherent (NC) detection are an alternative solution to circumvent the drawbacks of m-MIMO in coherent systems. This Ph.D. Thesis is focused on signal processing techniques for NC detection in conjunction with m-MIMO, proposing new constellation designs and NC detection algorithms, where the information is transmitted in the signal differential phase. First, we design new constellation schemes for an uplink multiuser NC m-MIMO system in Rayleigh fading channels. These designs allow us to separate the users' signals at the receiver thanks to a one-to-one correspondence between the constellation for each user and the received joint constellation. Two approaches are considered in terms of BER: each user achieves a different performance and, on the other hand, the same performance is provided for all users. We analyze the number of antennas needed for those designs and compare to the required number by other designs in the literature. It is shown that our designs based on DPSK require a lower number of antennas than that required by their counterpart schemes based on energy. In addition, we compare the performance to their coherent counterpart systems, resulting NC-m-MIMO based on DPSK capable of outperforming the coherent systems with the suitable designs. Second, in order to reduce the number of antennas required for a target performance we propose a multi-user bit interleaved coded modulation - iterative decoding (BICM-ID) scheme as channel coding for a NC-m-MIMO system based on DPSK. We propose a novel NC approach for calculating EXIT curves based on the number of antennas. Then using the EXIT chart we find the best channel coding scheme for our NC-m-MIMO proposal. We show that the number of users served by the BS can be increased with a 70% reduction in the number of antennas with respect to the case without channel coding. In particular, we show that with 100 antennas for error protection equal design for all users and a coding rate of 1/2 we achieve the minimum probability of error. Third, we consider that current scenarios such as backhaul wireless systems, rural or suburban environments, and even new device-to-device (D2D) communications or the communications in higher frequencies (millimeter and the emerging ones in terahertz frequencies) can have a predominant line-of-sight (LOS) component, modeled by Rician fading. For all these new possible scenarios in 5G, we analyze the behavior of the NC m-MIMO systems when we have a Rician fading. We present a new constellation design to overcome the problem of the LOS channel component, as well as an associated detection algorithm to separate each user in reception taking into account the characterization of the constellation. In addition, for contemplating a more realistic scenario, we propose grouping users which experience a Rayleigh fading with those with Rician fading, analyzing the SINR and the performance of such combination in a multi-user NC m-MIMO system based on M-DPSK. The adequate user grouping allows unifying the constellation for both groups of users and the detection algorithm, reducing the complexity of the receiver. Also, the number of users that may be multiplexed may be further increased thanks to the improved performance. In the fourth part of this Thesis, we analyse the performance of multi-user NC m- MIMO based on DPSK in real environments and practical channels defined for the current standards such as LTE, the future technologies such as 5G and even for communications in the terahertz band. For this purpose, we use a metric to model the time-varying characteristics of the practical channels. We employ again the EXIT charts tool for analyzing and designing iteratively decoded systems. This analysis allows us to obtain an estimate of the degradation of the system's performance imposed by realistic channels. Hence, we show that our proposed system is robust to temporal variations, thus it is more recommendable the employment of NC-m-MIMO-DPSK in the future communication standards such as 5G. In order to reduce he number of hardware resources required in terms of RF chains, facilitating its implementation in a real system, we propose incorporating differential spatial modulation (DSM). We present and analyze a novel multiuser scheme for NC-m-MIMO combined with DSM with which we can see that the number of antennas is not a affected by the incorporation of DSM, even we have an improvement on the performance with respect to the coherent case. Finally, we study the viability of multiplexing users by constellation schemes against classical multiplexing techniques such as time division multiple access (TDMA). In order to fully characterize the system performance we analyze the block error rate (BLER) and the throughput of a NC-m-MIMO system. The results show a significant advantage regarding the number of antennas for multiplexing in the constellation against TDMA. However, in some cases, the demodulation of multiple users in constellation could require an excessively large number of antennas compared to TDMA. Therefore, it is necessary to properly manage the tradeoff between throughout and the number of antennas, to reach an optimal operational point, as shown in this Thesis.El inmenso uso de contenido multimedia en los dispositivos inalámbricos ha sobrecargado las redes de comunicaciones. Además, la quinta generación (5G) de sistemas de comunicaciones demanda nuevos requisitos para la red de acceso radio, la cual requiere ofrecer capacidades de red mayores y nuevas funcionalidades como comunicaciones ultra fiables y con muy poca letancia (URLLC), comunicaciones vehiculares o aplicaciones como la realidad aumentada. Todo esto ha propiciado una crisis notable en el espectro electromagnético, lo que ha llevado a una necesidad por buscar técnicas alternativas con más eficiencia espectral para acomodar todos los requisitos de las tecnologías de comunicaciones emergentes y futuras. En este contexto, los sistemas multi antena masivos, conocidos como massive MIMO, m-MIMO, han sido propuestos como una solución prometedora que proporciona un incremento substancial de la capacidad de red, convirtiéndose en una de las tecnologías claves para el 5G. Los sistemas m-MIMO elevan enormemente el número de antenas en la estación base, lo que les permite ofrecer alta eficiencia espectral y energética. No obstante, tenemos que tener en cuenta que las actuales tecnologías de comunicaciones emplean técnicas coherentes, las cuales requieren de información del estado del canal y por ello la transmisión de una enorme cantidad de información de señalización. Este inconveniente se ve agravado en el caso del m-MIMO debido al enorme número de antenas. Por ello, la codificación diferencial y la detección no coherente (NC) son una solución alternativa para solventar el problema de m-MIMO en los sistemas coherentes. Esta Tesis se centra en las técnicas de procesado de señal para detección NC junto con m-MIMO, proponiendo nuevos esquemas de constelación y algoritmos de detección NC, donde la información sea transmitida en la diferencia de fase de la señal. Primero, diseñamos nuevas constelaciones para un sistema multi usuario NC en m- MIMO en enlace ascendente (uplink) en canales con desvanecimiento tipo Rayleigh. Estos diseños nos permiten separar las señales de los usuarios en el receptor gracias a la correspondencia unívoca entre la constelación de cada usuario individual y la constelación conjunta recibida en la estación base. Hemos considerado dos enfoques para el diseño en términos de probabilidad de error: cada usuario consigue un rendimiento distinto, mientras que por otro lado, todos los usuarios son capaces de recibir las mismas prestaciones de probabilidad de error. Analizamos el número de antenas necesario para estos diseños y comparamos con el número requerido por otros diseños propuestos en la literatura. Nuestro diseño basado en DPSK requiere un número menor de antenas comparado con los sistemas basados en detección de energía. También comparamos con su homólogo coherente, resultando que NC-m-MIMO basado en DPSK es capaz de superar a los sistemas coherentes con los diseños adecuados. En segundo lugar, para reducir el número de antenas requerido para un rendimiento dado, proponemos incluir un esquema de codificación de canal. Hemos optado por un esquema de modulación codificado por bit entrelazado y decodificación iterativa (BICMID). Hemos empleado la herramienta EXIT chart para el diseño de la codificación de canal, proponiendo un nuevo enfoque para calcular las curvas EXIT de forma NC y basadas en el número de antenas. Los resultados muestran que el número de usuarios servidos por la estación base puede ser incrementado reduciendo un 70% el número de antenas con respecto al caso sin codificación de canal. En particular, para un array de 100 antenas y un diseño que ofrezca iguales prestaciones a todos los usuarios, con un código de tasa 1=2, podemos conseguir la mínima probabilidad de error. En tercer lugar, consideramos escenarios donde el canal tenga una componente predominante de visión directa (LOS) con la estación base modelada mediante un desvanecimiento tipo Rician. Por ejemplo, sistemas inalámbricos de backhaul, entornos rurales o sub urbanos, comunicaciones entre dispositivos (D2D), también cuando nos movemos hacia frecuencias superiores como son en la banda de milimétricas o más recientemente, la banda de terahercios para buscar mayores anchos de banda. Todos estos escenarios están contemplados en el futuro 5G. Los diseños presentados para canales Rayleigh ya no son válidos debido a la componente LOS del canal, por ello presentamos un nuevo diseño de constelación que resuelve el problema de la componente LOS, así como una guía para diseñar nuevas constelaciones. También proponemos un algoritmo asociado al diseñno de la constelación para poder separar a los usuarios en recepción. Además, para contemplar un escenario más realista donde podamos encontrar tanto desvanecimiento Rayleigh como Rice, proponemos agrupar usuarios de ambos grupos, analizando su rendimiento y relación señal a interferencia en la combinación. El adecuado agrupamiento permite unificar el diseño de la constelación para ambos desvanecimientos y por tanto reducir la complejidad en el receptor. También, el número de usuarios multiplicados en la constelación podría ser incrementado, gracias a la mejora en el rendimiento. El cuarto módulo de esta tesis es dedicado a analizar el rendimiento de los diseños propuestos en presencia de canales reales, donde disponemos de variabilidad temporal y en frecuencia. Proponemos usar una métrica que modela las características de la variabilidad temporal y, usando de nuevo la herramienta EXIT, analizamos los sistemas decodificados iterativamente considerando ahora los parámetros prácticos del canal. Este análisis nos permite obtener una estimación de la degradación que sufre el rendimiento del sistema impuesto por canales reales. Los resultados muestran que los sistemas NC-m-MIMO basados en DPSK son muy robustos a la variabilidad temporal por lo que son recomendables para los nuevos escenarios propuestos por el 5G, donde el canal cambia rápidamente. Otra consideración para introducir los sistemas NC con m-MIMO es la problemática de necesitar muchas cadenas de radio frecuencia que llevarían a tamaños de dispositivos enormes. Para reducir este número se propone la modulación espacial. En esta Tesis, estudiamos su uso con los sistemas NC, proponiendo una solución de modulación espacial diferencial para esquemas con múltiples usuarios combinado con NC-m-MIMO. Finalmente, estudiamos la viabilidad de multiplexar usuarios en la constelación frente a usar técnicas clásicas de multiplexación como TDMA. Para caracterizar completamente el rendimiento del sistema, analizamos la tasa de error de bloque (BLER) y el throughput de un sistema NC-m-MIMO. Los resultados muestran una ventaja significativa en cuanto al número de antennas para multiplexar usuarios en la constelación frente al requerido por TDMA. No obstante, en algunos casos, la demodulación de múltiples usuarios en la constelación podría requerir un número de antennas excesivamente grande comparado con la multiplexación en el tiempo. Por ello, es necesario gestionar adecuadamente un balance entre el throughput y el número de antenas para alcanzar un punto operacional óptimo, como se muestra en esta Tesis.Programa Oficial de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Ana Isabel Pérez Neira.- Secretario: Máximo Morales Céspedes.- Vocal: María del Carmen Aguayo Torre

    Ranger VIII and IX. Part I - Mission description and performance

    Get PDF
    Ranger VIII and Ranger IX mission - pre-launch and launch operations, Atlas Agena launch vehicle system, deep space network, flight path, flight operations, and spacecraft subsystem

    New strategies for low noise, agile PLL frequency synthesis

    Get PDF
    Phase-Locked Loop based frequency synthesis is an essential technique employed in wireless communication systems for local oscillator generation. The ultimate goal in any design of frequency synthesisers is to generate precise and stable output frequencies with fast switching and minimal spurious and phase noise. The conflict between high resolution and fast switching leads to two separate integer synthesisers to satisfy critical system requirements. This thesis concerns a new sigma-delta fractional-N synthesiser design which is able to be directly modulated at high data rates while simultaneously achieving good noise performance. Measured results from a prototype indicate that fast switching, low noise and spurious free spectra are achieved for most covered frequencies. The phase noise of the unmodulated synthesiser was measured −113 dBc/Hz at 100 kHz offset from the carrier. The intermodulation effect in synthesisers is capable of producing a family of spurious components of identical form to fractional spurs caused in quantisation process. This effect directly introduces high spurs on some channels of the synthesiser output. Numerical and analytic results describing this effect are presented and amplitude and distribution of the resulting fractional spurs are predicted and validated against simulated and measured results. Finally an experimental arrangement, based on a phase compensation technique, is presented demonstrating significant suppression of intermodulation-borne spurs. A new technique, pre-distortion noise shaping, is proposed to dramatically reduce the impact of fractional spurs in fractional-N synthesisers. The key innovation is the introduction in the bitstream generation process of carefully-chosen set of components at identical offset frequencies and amplitudes and in anti-phase with the principal fractional spurs. These signals are used to modify the Σ-Δ noise shaping, so that fractional spurs are effectively cancelled. This approach can be highly effective in improving spectral purity and reduction of spurious components caused by the Σ-Δ modulator, quantisation noise, intermodulation effects and any other circuit factors. The spur cancellation is achieved in the digital part of the synthesiser without introducing additional circuitry. This technique has been convincingly demonstrated by simulated and experimental results

    Spatially Distributed Interferometric Receiver for 5G Wireless Communications and Sensing Applications

    Get PDF
    RÉSUMÉ Les systèmes de télécommunications sans fils ont connu une révolution et un succès sans précédent dans l’histoire humaine, et ce depuis l’introduction de la première génération des réseaux mobiles au début des années 1980. Alors que ce premier standard de communication était essentiellement basé sur des méthodes de modulation analogique du signal, ce qui ne permettait que la transmission de la voix, les générations des systèmes de télécommunications qui ont succédé depuis le deuxième standard mondial GSM, se sont basées sur la transmission numérique qui représente une plateforme universelle pour le traitement des données de toute sorte (voix, donnés texte, vidéos haute définition, etc, ). En effet, le traitement numérique du signal qui a débuté avec les premiers travaux sur la théorie de l’information, aux laboratoires Bell aux États-Unis vers la fin des années quarante du siècle passé, constitue le noyau dur de tous les standards de communication, y-compris la cinquième génération des réseaux 5G, dont la date d’entrée au marché mondial est prévue vers le début de l’année prochaine 2020. En effet, les réseaux de communications sans fils actuels, avec au sommet de la pyramide le standard 4G-LTE, ne peuvent pas répondre aux attentes des utilisateurs et des entreprises en termes de débit de transmission de données qui ne cesse d’augmenter d’une façon exponentielle, et pouvant atteindre les 40 Exabytes par mois vers 2020. De plus, la naissance du concept de l’internet des objets (IoT) qui consiste en l’interconnexion d’un très grand nombre de mini-capteurs sans fils qui vont gérer des milliers, voire des millions d’activités des toutes sortes, tels que l’aide à la conduite des voitures dans les routes, le contrôle des températures et des feux dans les régions forestières, la transmission des données médicales des patients en temps réel vers les centres hospitaliers, etc. Dans le but de répondre aux besoins actuels et futurs, la venue de la cinquième génération des réseaux des communications 5G est devenue urgente plus que jamais. En effet, ce nouveau standard ne sera pas une amélioration incrémentale de la 4G-LTE, mais sera plutôt toute une nouvelle plateforme intelligente offrant des débits de données allant jusqu'à plusieurs gigabits par seconde, avec un temps de latence ne dépassant pas 1 milliseconde dans le but d’assurer une qualité de service sans égal.----------ABSTRACT Wireless communication systems are one of the most famous success stories in the field of engineering in modern era. In fact, the birth of the first generation of mobile communications goes back to the early 1980’s. This first standard was based on analog modulation with the aim of transmitting only voice signals. And with the progress made in signal processing techniques and the large-scale productions of digital integrated circuits, the second generations of wireless communications was introduced in the nineties of the last century. Since then, a new standard for wireless mobile systems has been introduced every ten years or so, with ever increasing data rates, lower latency and better quality of service, thanks to the adoption of sophisticated modulation schemes and robust error correcting codes, in conjunction with improved hardware capabilities over the years. The magic progress in wireless technologies is strongly related to the magnificent research work pioneered by Claude Shannon on information theory in 1948 at Bell-labs, in combination with continuous research efforts conducted by millions of brilliant minds worldwide. However, the current wireless generation of wireless systems 4G-LTE is unable to follow the explosion of wireless traffic, which is trigged by the exponential demand for higher data rates, which would create monthly traffic of about 40 Exabytes by 2020. Moreover, the birth of Internet of Things (IoT) concept is a driving force towards the emergence of a huge platform of billions of interconnected devices and sensors, used to control and monitor an ever-increasing number of applications (forests fire detection, intelligent cars, real-time health monitoring for sick and old people , etc.). As a matter of fact, the upcoming of the fifth generation (5G) of wireless mobile networks has become a very urgent necessity in order to meet the widely-discussed system requirements in terms of capacity, latency and quality of service. Consequently, elements of the physical layer must be redrawn and reorganized in order to avoid the prohibited cost of network deployment and power consumption of billions of interconnected devices

    Biomedical and Human Factors Requirements for a Manned Earth Orbiting Station

    Get PDF
    This report is the result of a study conducted by Republic Aviation Corporation in conjunction with Spacelabs, Inc.,in a team effort in which Republic Aviation Corporation was prime contractor. In order to determine the realistic engineering design requirements associated with the medical and human factors problems of a manned space station, an interdisciplinary team of personnel from the Research and Space Divisions was organized. This team included engineers, physicians, physiologists, psychologists, and physicists. Recognizing that the value of the study is dependent upon medical judgments as well as more quantifiable factors (such as design parameters) a group of highly qualified medical consultants participated in working sessions to determine which medical measurements are required to meet the objectives of the study. In addition, various Life Sciences personnel from NASA (Headquarters, Langley, MSC) participated in monthly review sessions. The organization, team members, consultants, and some of the part-time contributors are shown in Figure 1. This final report embodies contributions from all of these participants

    The Telecommunications and Data Acquisition Report

    Get PDF
    Tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; networks consolidation program; and network sustaining are described
    corecore