20 research outputs found

    Selection of Mother Wavelet Function for Multi-Channel EEG Signals Analysis during a Working Memory Task

    Get PDF
    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10–20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1–db20), Symlets (sym1–sym20), and Coiflets (coif1–coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using “sym9” across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions

    Automatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA–WT during Working Memory Tasks

    Get PDF
    Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing

    Depth of anaesthesia assessment based on time and frequency features of simplified electroencephalogram (EEG)

    Get PDF
    Anaesthesiology is a medical subject focusing on the use of drugs and other methods to deprive patients’ sensation for discomfort in painful medical diagnosis or treatment. It is important to assess the depth of anaesthesia (DoA) accurately since a precise as- sessment is helpful for avoiding various adverse reactions such as intraoperative awareness with recall (underdosage), prolonged recovery and an increased risk of post- operative complications for a patient (overdosage). Evidence shows that the depth of anaesthesia monitoring using electroencephalograph (EEG) improves patient treat- ment outcomes by reducing the incidences of intra-operative awareness, minimizing anaesthetic drug consumption and resulting in faster wake-up and recovery. For an accurate DoA assessment, intensive research has been conducted in finding 'an ulti- mate index', and various monitors and DoA algorithms were developed. Generally, the limitations of the existing DoA monitors or latest DoA algorithms include unsatis- factory data filtering techniques, time delay and inflexible. The focus of this dissertation is to develop reliable DoA algorithms for accurate DoA assessment. Some novel time-frequency domain signal processing techniques, which are better suited for non-stationary EEG signals than currently established methods, have been proposed and applied to monitor the DoA based on simplified EEG signals based on plenty of programming work (including C and other programming language). The fast Fourier transform (FFT) and the discrete wavelet transforms are applied to pre-process EEG data in the frequency domain. The nonlocal mean, mobility, permu- tation entropy, Lempel-Ziv complexity, second order difference plot and interval feature extraction methods are modified and applied to investigate the scaling behaviour of the EEG in the time domain. We proposed and developed three new indexes for identifying, classifying and monitoring the DoA. The new indexes are evaluated by comparing with the most popular BIS index. Simulation results demonstrate that our new methods monitor the DoA in all anaesthesia states accurately. The results also demonstrate the advantages of proposed indexes in the cases of poor signal quality and the consistency with the anaesthetists’ records. These new indexes show a 3.1-59.7 seconds earlier time response than BIS during the change from awake to light anaesthesia and a 33-264 seconds earlier time response than BIS during the change from deep anaesthesia to moderate anaesthesia

    XXIV congreso anual de la sociedad española de ingeniería biomédica (CASEIB2016)

    Full text link
    En la presente edición, más de 150 trabajos de alto nivel científico van a ser presentados en 18 sesiones paralelas y 3 sesiones de póster, que se centrarán en áreas relevantes de la Ingeniería Biomédica. Entre las sesiones paralelas se pueden destacar la sesión plenaria Premio José María Ferrero Corral y la sesión de Competición de alumnos de Grado en Ingeniería Biomédica, con la participación de 16 alumnos de los Grados en Ingeniería Biomédica a nivel nacional. El programa científico se complementa con dos ponencias invitadas de científicos reconocidos internacionalmente, dos mesas redondas con una importante participación de sociedades científicas médicas y de profesionales de la industria de tecnología médica, y dos actos sociales que permitirán a los participantes acercarse a la historia y cultura valenciana. Por primera vez, en colaboración con FENIN, seJane Campos, R. (2017). XXIV congreso anual de la sociedad española de ingeniería biomédica (CASEIB2016). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/79277EDITORIA

    Reduction of the Dimensionality of the EEG Channels during Scoliosis Correction Surgeries Using a Wavelet Decomposition Technique

    No full text
    This paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria’s value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded from six patients who underwent scoliosis correction surgeries in the Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM) (the Medical center of National University of Malaysia). The combinational signal was tested by power spectral density, cross-correlation function and wavelet coherence. The experimental results show that the system-outputted EEG signals are neatly switched without any substantial changes in the consistency of EEG components. This paper provides an efficient procedure for analyzing EEG signals in order to avoid averaging the channels that lead to redistribution of the noise on both channels, reducing the dimensionality of the EEG features and preparing the best EEG stream for the classification and monitoring stage

    Reduction of the Dimensionality of the EEG Channels during Scoliosis Correction Surgeries Using a Wavelet Decomposition Technique

    No full text
    This paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria’s value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded from six patients who underwent scoliosis correction surgeries in the Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM) (the Medical center of National University of Malaysia). The combinational signal was tested by power spectral density, cross-correlation function and wavelet coherence. The experimental results show that the system-outputted EEG signals are neatly switched without any substantial changes in the consistency of EEG components. This paper provides an efficient procedure for analyzing EEG signals in order to avoid averaging the channels that lead to redistribution of the noise on both channels, reducing the dimensionality of the EEG features and preparing the best EEG stream for the classification and monitoring stage

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    Characterization of alar ligament on 3.0T MRI: a cross-sectional study in IIUM Medical Centre, Kuantan

    Get PDF
    INTRODUCTION: The main purpose of the study is to compare the normal anatomy of alar ligament on MRI between male and female. The specific objectives are to assess the prevalence of alar ligament visualized on MRI, to describe its characteristics in term of its course, shape and signal homogeneity and to find differences in alar ligament signal intensity between male and female. This study also aims to determine the association between the heights of respondents with alar ligament signal intensity and dimensions. MATERIALS & METHODS: 50 healthy volunteers were studied on 3.0T MR scanner Siemens Magnetom Spectra using 2-mm proton density, T2 and fat-suppression sequences. Alar ligament is depicted in 3 planes and the visualization and variability of the ligament courses, shapes and signal intensity characteristics were determined. The alar ligament dimensions were also measured. RESULTS: Alar ligament was best depicted in coronal plane, followed by sagittal and axial planes. The orientations were laterally ascending in most of the subjects (60%), predominantly oval in shaped (54%) and 67% showed inhomogenous signal. No significant difference of alar ligament signal intensity between male and female respondents. No significant association was found between the heights of the respondents with alar ligament signal intensity and dimensions. CONCLUSION: Employing a 3.0T MR scanner, the alar ligament is best portrayed on coronal plane, followed by sagittal and axial planes. However, tremendous variability of alar ligament as depicted in our data shows that caution needs to be exercised when evaluating alar ligament, especially during circumstances of injury
    corecore