18,982 research outputs found

    Oscillation energy based sensitivity analysis and control for multi-mode oscillation systems

    Full text link
    This paper describes a novel approach to analyze and control systems with multi-mode oscillation problems. Traditional single dominant mode analysis fails to provide effective control actions when several modes have similar low damping ratios. This work addresses this problem by considering all modes in the formulation of the system kinetic oscillation energy. The integral of energy over time defines the total action as a measure of dynamic performance, and its sensitivity allows comparing the performance of different actuators/locations in the system to select the most effective one to damp the oscillation energy. Time domain simulations in the IEEE 9-bus system and IEEE 39-bus system verify the findings obtained by the oscillation energy based analysis. Applications of the proposed method in control and system planning are discussed.Comment: Conference paper, IEEE PESGM 201

    Thermodynamics of climate change: generalized sensitivities

    Get PDF
    Using a recent theoretical approach, we study how global warming impacts the thermodynamics of the climate system by performing experiments with a simplified yet Earth-like climate model. The intensity of the Lorenz energy cycle, the Carnot efficiency, the material entropy production, and the degree of irreversibility of the system change monotonically with the CO2 concentration. Moreover, these quantities feature an approximately linear behaviour with respect to the logarithm of the CO2 concentration in a relatively wide range. These generalized sensitivities suggest that the climate becomes less efficient, more irreversible, and features higher entropy production as it becomes warmer, with changes in the latent heat fluxes playing a predominant role. These results may be of help for explaining recent findings obtained with state of the art climate models regarding how increases in CO2 concentration impact the vertical stratification of the tropical and extratropical atmosphere and the position of the storm tracks

    Modeling, Simulating, and Parameter Fitting of Biochemical Kinetic Experiments

    Full text link
    In many chemical and biological applications, systems of differential equations containing unknown parameters are used to explain empirical observations and experimental data. The DEs are typically nonlinear and difficult to analyze, requiring numerical methods to approximate the solutions. Compounding this difficulty are the unknown parameters in the DE system, which must be given specific numerical values in order for simulations to be run. Estrogen receptor protein dimerization is used as an example to demonstrate model construction, reduction, simulation, and parameter estimation. Mathematical, computational, and statistical methods are applied to empirical data to deduce kinetic parameter estimates and guide decisions regarding future experiments and modeling. The process demonstrated serves as a pedagogical example of quantitative methods being used to extract parameter values from biochemical data models.Comment: 23 pages, 9 figures, to be published in SIAM Revie

    Analysis of high load dampers

    Get PDF
    High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines

    Universally Sloppy Parameter Sensitivities in Systems Biology

    Get PDF
    Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring \emph{in vivo} biochemical parameters is difficult, and collectively fitting them to other data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a `sloppy' spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.Comment: Submitted to PLoS Computational Biology. Supplementary Information available in "Other Formats" bundle. Discussion slightly revised to add historical contex
    • …
    corecore