2,573 research outputs found

    Monte Carlo optimization approach for decentralized estimation networks under communication constraints

    Get PDF
    We consider designing decentralized estimation schemes over bandwidth limited communication links with a particular interest in the tradeoff between the estimation accuracy and the cost of communications due to, e.g., energy consumption. We take two classes of in–network processing strategies into account which yield graph representations through modeling the sensor platforms as the vertices and the communication links by edges as well as a tractable Bayesian risk that comprises the cost of transmissions and penalty for the estimation errors. This approach captures a broad range of possibilities for “online” processing of observations as well as the constraints imposed and enables a rigorous design setting in the form of a constrained optimization problem. Similar schemes as well as the structures exhibited by the solutions to the design problem has been studied previously in the context of decentralized detection. Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt this framework for estimation, however, the corresponding optimization schemes involve integral operators that cannot be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain particle representations and approximate computational schemes for both classes of in–network processing strategies and their optimization. The proposed Monte Carlo optimization procedures operate in a scalable and efficient fashion and, owing to the non-parametric nature, can produce results for any distributions provided that samples can be produced from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy asymptotically as the communication becomes more costly, through a parameterized Bayesian risk

    Monte Carlo optimization of decentralized estimation networks over directed acyclic graphs under communication constraints

    Get PDF
    Motivated by the vision of sensor networks, we consider decentralized estimation networks over bandwidth–limited communication links, and are particularly interested in the tradeoff between the estimation accuracy and the cost of communications due to, e.g., energy consumption. We employ a class of in–network processing strategies that admits directed acyclic graph representations and yields a tractable Bayesian risk that comprises the cost of communications and estimation error penalty. This perspective captures a broad range of possibilities for processing under network constraints and enables a rigorous design problem in the form of constrained optimization. A similar scheme and the structures exhibited by the solutions have been previously studied in the context of decentralized detection. Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt this framework for estimation, however, the corresponding optimization scheme involves integral operators that cannot be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain particle representations and approximate computational schemes for both the in–network processing strategies and their optimization. The proposed Monte Carlo optimization procedure operates in a scalable and efficient fashion and, owing to the non-parametric nature, can produce results for any distributions provided that samples can be produced from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy asymptotically as the communication becomes more costly, through a parameterized Bayesian risk

    Monte Carlo optimization approach for decentralized estimation networks under communication constraints

    Get PDF
    We consider designing decentralized estimation schemes over bandwidth limited communication links with a particular interest in the tradeoff between the estimation accuracy and the cost of communications due to, e.g., energy consumption. We take two classes of in–network processing strategies into account which yield graph representations through modeling the sensor platforms as the vertices and the communication links by edges as well as a tractable Bayesian risk that comprises the cost of transmissions and penalty for the estimation errors. This approach captures a broad range of possibilities for “online” processing of observations as well as the constraints imposed and enables a rigorous design setting in the form of a constrained optimization problem. Similar schemes as well as the structures exhibited by the solutions to the design problem has been studied previously in the context of decentralized detection. Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt this framework for estimation, however, the corresponding optimization schemes involve integral operators that cannot be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain particle representations and approximate computational schemes for both classes of in–network processing strategies and their optimization. The proposed Monte Carlo optimization procedures operate in a scalable and efficient fashion and, owing to the non-parametric nature, can produce results for any distributions provided that samples can be produced from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy asymptotically as the communication becomes more costly, through a parameterized Bayesian risk

    Systems, interactions and macrotheory

    Get PDF
    A significant proportion of early HCI research was guided by one very clear vision: that the existing theory base in psychology and cognitive science could be developed to yield engineering tools for use in the interdisciplinary context of HCI design. While interface technologies and heuristic methods for behavioral evaluation have rapidly advanced in both capability and breadth of application, progress toward deeper theory has been modest, and some now believe it to be unnecessary. A case is presented for developing new forms of theory, based around generic “systems of interactors.” An overlapping, layered structure of macro- and microtheories could then serve an explanatory role, and could also bind together contributions from the different disciplines. Novel routes to formalizing and applying such theories provide a host of interesting and tractable problems for future basic research in HCI

    On Structured Realizability and Stabilizability of Linear Systems

    Full text link
    We study the notion of structured realizability for linear systems defined over graphs. A stabilizable and detectable realization is structured if the state-space matrices inherit the sparsity pattern of the adjacency matrix of the associated graph. In this paper, we demonstrate that not every structured transfer matrix has a structured realization and we reveal the practical meaning of this fact. We also uncover a close connection between the structured realizability of a plant and whether the plant can be stabilized by a structured controller. In particular, we show that a structured stabilizing controller can only exist when the plant admits a structured realization. Finally, we give a parameterization of all structured stabilizing controllers and show that they always have structured realizations

    H_2-Optimal Decentralized Control over Posets: A State-Space Solution for State-Feedback

    Full text link
    We develop a complete state-space solution to H_2-optimal decentralized control of poset-causal systems with state-feedback. Our solution is based on the exploitation of a key separability property of the problem, that enables an efficient computation of the optimal controller by solving a small number of uncoupled standard Riccati equations. Our approach gives important insight into the structure of optimal controllers, such as controller degree bounds that depend on the structure of the poset. A novel element in our state-space characterization of the controller is a remarkable pair of transfer functions, that belong to the incidence algebra of the poset, are inverses of each other, and are intimately related to prediction of the state along the different paths on the poset. The results are illustrated by a numerical example.Comment: 39 pages, 2 figures, submitted to IEEE Transactions on Automatic Contro

    System Level Synthesis

    Get PDF
    This article surveys the System Level Synthesis framework, which presents a novel perspective on constrained robust and optimal controller synthesis for linear systems. We show how SLS shifts the controller synthesis task from the design of a controller to the design of the entire closed loop system, and highlight the benefits of this approach in terms of scalability and transparency. We emphasize two particular applications of SLS, namely large-scale distributed optimal control and robust control. In the case of distributed control, we show how SLS allows for localized controllers to be computed, extending robust and optimal control methods to large-scale systems under practical and realistic assumptions. In the case of robust control, we show how SLS allows for novel design methodologies that, for the first time, quantify the degradation in performance of a robust controller due to model uncertainty -- such transparency is key in allowing robust control methods to interact, in a principled way, with modern techniques from machine learning and statistical inference. Throughout, we emphasize practical and efficient computational solutions, and demonstrate our methods on easy to understand case studies.Comment: To appear in Annual Reviews in Contro

    Non rivalry and complementarity in computer software

    Get PDF
    In this paper we contend that – contrary to what argued by a vast part of the literature – computer software and, more in general, digital goods (i.e. symbolic strings on an electronic medium with some eco- nomic value) do not present the characteristics of a public good as they do not suffer from lack of rivarly and excludability any more than other durable goods which are regularly allocated on competitive markets. We argue instead that the “market allocation problem” – if any – with digital goods does not arise from their public nature but from some pe- culiar characteristics of the production technology. The latter presents the nature of a typical problem solving activity as far as the produc- tion of the first unit is concerned, this means that innovative activities in computer software are characterized by high degrees of interdepen- dencies, cumulativeness, sequentiality, path dependence and, more in general, sub-optimality arising from imperfect problem decompositions. As far as the production of further units is concerned, we observe in- stead high (but not infinite) expansibility and perfect codification (lack of any tacit dimension) which make diffusion costs rapidly fall. Given such claims, we argue that a standard “Coasian” approach to property rights, designed to cope with the externalities of semi-public goods may not be appropriate for computer software, as it may decrease both ex-ante incentives to innovation and ex-post efficiency of diffusion. On the other hand the institutional definition of property rights may strongly influence the patterns of technological evolution and division of labor in directions which are not necessarily optimal.Intellectual property; hierarchies; innovation; software; digital goods
    • 

    corecore