7,863 research outputs found

    Performance analysis of networks on chips

    Get PDF
    Modules on a chip (such as processors and memories) are traditionally connected through a single link, called a bus. As chips become more complex and the number of modules on a chip increases, this connection method becomes inefficient because the bus can only be used by one module at a time. Networks on chips are an emerging technology for the connection of on-chip modules. In networks on chips, switches are used to transmit data from one module to another, which entails that multiple links can be used simultaneously so that communication is more efficient. Switches consist of a number of input ports to which data arrives and output ports from which data leaves. If data at multiple input ports has to be transmitted to the same output port, only one input port may actually transmit its data, which may lead to congestion. Queueing theory deals with the analysis of congestion phenomena caused by competition for service facilities with scarce resources. Such phenomena occur, for example, in traffic intersections, manufacturing systems, and communication networks like networks on chips. These congestion phenomena are typically analysed using stochastic models, which capture the uncertain and unpredictable nature of processes leading to congestion (such as irregular car arrivals to a traffic intersection). Stochastic models are useful tools for the analysis of networks on chips as well, due to the complexity of data traffic on these networks. In this thesis, we therefore study queueing models aimed at networks on chips. The thesis is centred around two key models: A model of a switch in isolation, the so-called single-switch model, and a model of a network of switches where all traffic has the same destination, the so-called network of polling stations. For both models we are interested in the throughput (the amount of data transmitted per time unit) and the mean delay (the time it takes data to travel across the network). Single-switch models are often studied under the assumption that the number of ports tends to infinity and that traffic is uniform (i.e., on average equally many packets arrive to all buffers, and all possible destinations are equally likely). In networks on chips, however, the number of buffers is typically small. We introduce a new approximation specifically aimed at small switches with (memoryless) Bernoulli arrivals. We show that, for such switches, this approximation is more accurate than currently known approximations. As traffic in networks on chips is usually non-uniform, we also extend our approximation to non-uniform switches. The key difference between uniform and nonuniform switches is that in non-uniform switches, all queues have a different maximum throughput. We obtain a very accurate approximation of this throughput, which allows us to extend the mean delay approximation. The extended approximation is derived for Bernoulli arrivals and correlated arrival processes. Its accuracy is verified through a comparison with simulation results. The second key model is that of concentrating tree networks of polling stations (polling stations are essentially switches where all traffic has the same output port as destination). Single polling stations have been studied extensively in literature, but only few attempts have been made to analyse networks of polling stations. We establish a reduction theorem that states that networks of polling stations can be reduced to single polling stations while preserving some information on mean waiting times. This reduction theorem holds under the assumption that the last node of the network uses a so-called HoL-based service discipline, which means that the choice to transmit data from a certain buffer may only depend on which buffers are empty, but not on the amount of data in the buffers. The reduction theorem is a key tool for the analysis of networks of polling stations. In addition to this, mean waiting times in single polling stations have to be calculated, either exactly or approximately. To this end, known results can be used, but we also devise a new single-station approximation that can be used for a large subclass of HoL-based service disciplines. Finally, networks on chips typically implement flow control, which is a mechanism that limits the amount of data in the network from one source. We analyse the division of throughput over several sources in a network of polling stations with flow control. Our results indicate that the throughput in such a network is determined by an interaction between buffer sizes, flow control limits, and service disciplines. This interaction is studied in more detail by means of a numerical analysis

    PACE: Simple Multi-hop Scheduling for Single-radio 802.11-based Stub Wireless Mesh Networks

    Get PDF
    IEEE 802.11-based Stub Wireless Mesh Networks (WMNs) are a cost-effective and flexible solution to extend wired network infrastructures. Yet, they suffer from two major problems: inefficiency and unfairness. A number of approaches have been proposed to tackle these problems, but they are too restrictive, highly complex, or require time synchronization and modifications to the IEEE 802.11 MAC. PACE is a simple multi-hop scheduling mechanism for Stub WMNs overlaid on the IEEE 802.11 MAC that jointly addresses the inefficiency and unfairness problems. It limits transmissions to a single mesh node at each time and ensures that each node has the opportunity to transmit a packet in each network-wide transmission round. Simulation results demonstrate that PACE can achieve optimal network capacity utilization and greatly outperforms state of the art CSMA/CA-based solutions as far as goodput, delay, and fairness are concerned

    Automated Meter Reading and SCADA Application for Wireless Sensor Network

    Get PDF
    Currently, there are many technologies available to automate public utilities services (water, gas and electricity). AMR, Automated Meter Reading, and SCADA, Supervisory Control and Data Acquisition, are the main functions that these technologies must support. In this paper, we propose a low cost network with a similar architecture to a static ad-hoc sensor network based on low power and unlicensed radio. Topological parameters for this network are analyzed to obtain optimal performances and to derive a pseudo-range criterion to create an application-specific spanning tree for polling optimization purposes. In application layer services, we analytically study different polling schemes

    Dynamic load balancing for the distributed mining of molecular structures

    Get PDF
    In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids

    Wireless Communication in Process Control Loop: Requirements Analysis, Industry Practices and Experimental Evaluation

    Get PDF
    Wireless communication is already used in process automation for process monitoring. The next stage of implementation of wireless technology in industrial applications is for process control. The need for wireless networked control systems has evolved because of the necessity for extensibility, mobility, modularity, fast deployment, and reduced installation and maintenance cost. These benefits are only applicable given that the wireless network of choice can meet the strict requirements of process control applications, such as latency. In this regard, this paper is an effort towards identifying current industry practices related to implementing process control over a wireless link and evaluates the suitability of ISA100.11a network for use in process control through experiments

    Doped Fountain Coding for Minimum Delay Data Collection in Circular Networks

    Full text link
    This paper studies decentralized, Fountain and network-coding based strategies for facilitating data collection in circular wireless sensor networks, which rely on the stochastic diversity of data storage. The goal is to allow for a reduced delay collection by a data collector who accesses the network at a random position and random time. Data dissemination is performed by a set of relays which form a circular route to exchange source packets. The storage nodes within the transmission range of the route's relays linearly combine and store overheard relay transmissions using random decentralized strategies. An intelligent data collector first collects a minimum set of coded packets from a subset of storage nodes in its proximity, which might be sufficient for recovering the original packets and, by using a message-passing decoder, attempts recovering all original source packets from this set. Whenever the decoder stalls, the source packet which restarts decoding is polled/doped from its original source node. The random-walk-based analysis of the decoding/doping process furnishes the collection delay analysis with a prediction on the number of required doped packets. The number of doped packets can be surprisingly small when employed with an Ideal Soliton code degree distribution and, hence, the doping strategy may have the least collection delay when the density of source nodes is sufficiently large. Furthermore, we demonstrate that network coding makes dissemination more efficient at the expense of a larger collection delay. Not surprisingly, a circular network allows for a significantly more (analytically and otherwise) tractable strategies relative to a network whose model is a random geometric graph

    Efficient mining of discriminative molecular fragments

    Get PDF
    Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the well known National Cancer Institute’s HIV-screening dataset
    • …
    corecore