25,597 research outputs found

    Far-off-resonant wave interaction in one-dimensional photonic crystals with quadratic nonlinearity

    Full text link
    We extend a recently developed Hamiltonian formalism for nonlinear wave interaction processes in spatially periodic dielectric structures to the far-off-resonant regime, and investigate numerically the three-wave resonance conditions in a one-dimensional optical medium with χ(2)\chi^{(2)} nonlinearity. In particular, we demonstrate that the cascading of nonresonant wave interaction processes generates an effective χ(3)\chi^{(3)} nonlinear response in these systems. We obtain the corresponding coupling coefficients through appropriate normal form transformations that formally lead to the Zakharov equation for spatially periodic optical media.Comment: 14 pages, 4 figure

    Generalised Elliptic Functions

    Full text link
    We consider multiply periodic functions, sometimes called Abelian functions, defined with respect to the period matrices associated with classes of algebraic curves. We realise them as generalisations of the Weierstras P-function using two different approaches. These functions arise naturally as solutions to some of the important equations of mathematical physics and their differential equations, addition formulae, and applications have all been recent topics of study. The first approach discussed sees the functions defined as logarithmic derivatives of the sigma-function, a modified Riemann theta-function. We can make use of known properties of the sigma function to derive power series expansions and in turn the properties mentioned above. This approach has been extended to a wide range of non hyperelliptic and higher genus curves and an overview of recent results is given. The second approach defines the functions algebraically, after first modifying the curve into its equivariant form. This approach allows the use of representation theory to derive a range of results at lower computational cost. We discuss the development of this theory for hyperelliptic curves and how it may be extended in the future.Comment: 16 page

    Darboux coordinates for the Hamiltonian of first order Einstein-Cartan gravity

    Full text link
    Based on preliminary analysis of the Hamiltonian formulation of the first order Einstein-Cartan action (arXiv:0902.0856 [gr-qc] and arXiv:0907.1553 [gr-qc]) we derive the Darboux coordinates, which are a unique and uniform change of variables preserving equivalence with the original action in all spacetime dimensions higher than two. Considerable simplification of the Hamiltonian formulation using the Darboux coordinates, compared with direct analysis, is explicitly demonstrated. Even an incomplete Hamiltonian analysis in combination with known symmetries of the Einstein-Cartan action and the equivalence of Hamiltonian and Lagrangian formulations allows us to unambiguously conclude that the \textit{unique} \textit{gauge} invariances generated by the first class constraints of the Einstein-Cartan action and the corresponding Hamiltonian are \textit{translation and rotation in the tangent space}. Diffeomorphism invariance, though a manifest invariance of the action, is not generated by the first class constraints of the theory.Comment: 44 pages, references are added, organization of material is slightly modified (additional section is introduced), more details of calculation of the Dirac bracket between translational and rotational constraints are provide
    • …
    corecore