2,846 research outputs found

    Performance enhancement for LTE and beyond systems

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyWireless communication systems have undergone fast development in recent years. Based on GSM/EDGE and UMTS/HSPA, the 3rd Generation Partnership Project (3GPP) specified the Long Term Evolution (LTE) standard to cope with rapidly increasing demands, including capacity, coverage, and data rate. To achieve this goal, several key techniques have been adopted by LTE, such as Multiple-Input and Multiple-Output (MIMO), Orthogonal Frequency-Division Multiplexing (OFDM), and heterogeneous network (HetNet). However, there are some inherent drawbacks regarding these techniques. Direct conversion architecture is adopted to provide a simple, low cost transmitter solution. The problem of I/Q imbalance arises due to the imperfection of circuit components; the orthogonality of OFDM is vulnerable to carrier frequency offset (CFO) and sampling frequency offset (SFO). The doubly selective channel can also severely deteriorate the receiver performance. In addition, the deployment of Heterogeneous Network (HetNet), which permits the co-existence of macro and pico cells, incurs inter-cell interference for cell edge users. The impact of these factors then results in significant degradation in relation to system performance. This dissertation aims to investigate the key techniques which can be used to mitigate the above problems. First, I/Q imbalance for the wideband transmitter is studied and a self-IQ-demodulation based compensation scheme for frequencydependent (FD) I/Q imbalance is proposed. This combats the FD I/Q imbalance by using the internal diode of the transmitter and a specially designed test signal without any external calibration instruments or internal low-IF feedback path. The instrument test results show that the proposed scheme can enhance signal quality by 10 dB in terms of image rejection ratio (IRR). In addition to the I/Q imbalance, the system suffers from CFO, SFO and frequency-time selective channel. To mitigate this, a hybrid optimum OFDM receiver with decision feedback equalizer (DFE) to cope with the CFO, SFO and doubly selective channel. The algorithm firstly estimates the CFO and channel frequency response (CFR) in the coarse estimation, with the help of hybrid classical timing and frequency synchronization algorithms. Afterwards, a pilot-aided polynomial interpolation channel estimation, combined with a low complexity DFE scheme, based on minimum mean squared error (MMSE) criteria, is developed to alleviate the impact of the residual SFO, CFO, and Doppler effect. A subspace-based signal-to-noise ratio (SNR) estimation algorithm is proposed to estimate the SNR in the doubly selective channel. This provides prior knowledge for MMSE-DFE and automatic modulation and coding (AMC). Simulation results show that this proposed estimation algorithm significantly improves the system performance. In order to speed up algorithm verification process, an FPGA based co-simulation is developed. Inter-cell interference caused by the co-existence of macro and pico cells has a big impact on system performance. Although an almost blank subframe (ABS) is proposed to mitigate this problem, the residual control signal in the ABS still inevitably causes interference. Hence, a cell-specific reference signal (CRS) interference cancellation algorithm, utilizing the information in the ABS, is proposed. First, the timing and carrier frequency offset of the interference signal is compensated by utilizing the cross-correlation properties of the synchronization signal. Afterwards, the reference signal is generated locally and channel response is estimated by making use of channel statistics. Then, the interference signal is reconstructed based on the previous estimate of the channel, timing and carrier frequency offset. The interference is mitigated by subtracting the estimation of the interference signal and LLR puncturing. The block error rate (BLER) performance of the signal is notably improved by this algorithm, according to the simulation results of different channel scenarios. The proposed techniques provide low cost, low complexity solutions for LTE and beyond systems. The simulation and measurements show good overall system performance can be achieved

    Intercarrier Interference Suppression for the OFDM Systems in Time-Varying Multipath Fading Channels

    Get PDF
    Due to its spectral efficiency and robustness over the multipath channels, orthogonal frequency division multiplexing (OFDM) has served as one of the major modulation schemes for the modern communication systems. In the future, the wireless OFDM systems are expected to operate at high carrier-frequencies, high speed and high throughput mobile reception, where the fasting time-varying fading channels are encountered. The channel variation destroys the orthogonality among the subcarriers and leads to the intercarrier interference (ICI). ICI poses a significant limitation to the wireless OFDM systems. The aim of this dissertation is to find an efficient method of providing reliable communication using OFDM in the fast time-varying fading channel scenarios. First, we investigate the OFDM performance in the situation of time-varying mobile channels in the presence of multiple Doppler frequency shifts. A new mathematical framework of the ICI effect is derived. The simulation results show that ICI induces an irreducible error probability floor, which in proportional to the Doppler frequency shifts. Furthermore, it is observed that ICI power arises from a few adjacent subcarriers. This observation motivates us to design the low-complexity Q-tap equalizers, namely, Minimum Mean Square Error (MMSE) linear equalizer and Decision Feedback (DF) non-linear equalizer to mitigate the ICI. Simulation results show that both Q-tap equalizers can improve the system performance in the sense of symbol error rate (SER). To employ these equalizers, the channel state information is also required. In this dissertation, we also design a pilot-aided channel estimation via Wiener filtering for a time-varying Wide-sense Stationary Uncorrelated Scatterers (WSSUS) channel model. The channel estimator utilizes that channel statistical properties. Our proposed low-complexity ICI suppression scheme, which incorporates the Q-tap equalizer with our proposed channel estimator, can significantly improve the performance of the OFDM systems in a fast time-varying fading channels. At the last part of the dissertation, an alternative ICI mitigation approach, which is based on the ICI self-cancellation coding, is also discussed. The EM-based approach, which solves the phase and amplitude ambiguities associated with this approach, is also introduced

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Cloud Transmission: System Performance and Application Scenarios

    Get PDF
    [EN] Cloud Transmission (Cloud Txn) System is a flexible multi-layer system that uses spectrum overlay technology to simultaneously deliver multiple program streams with different characteristics and robustness for different services (mobile TV, HDTV and UHDTV) in one RF channel. The transmitted signal is formed by superimposing a number of independent signals at desired power levels, to form a multilayered signal. The signals of different layers can have different coding, bit rate, and robustness. For the top layer, system parameters are chosen to provide very robust transmission that can be used for high speed mobile broadcasting service to portable devices. The bit rate is traded for more powerful error correction coding and robustness so that the Signal to Noise Ratio (SNR) threshold at the receiver is a negative value in the range of -2 to -3 dB. The top layer is designed to withstand combined noise, co-channel interference and multipath distortion power levels higher than the desired signal power. The lowerlayer signal can be DVB-T2 signal or other newly designed system to deliver HDTV/UHDTV to fixed receivers. The system concept is open to technological advances that might come in the future: all new technologies, BICM/Non Uuniform-QAM, rotated constellations, Time Frequency Slicing or MIMO techniques can be implemented in the Cloud Txn lower (high data) rate layer. The main focus of this paper is to thoroughly describe the performance of this newly presented Cloud Transmission broadcasting system.This work has been financially supported in part by the University of the Basque Country UPV/EHU (UFI 11/30), by the Basque Government (IT-683- 13 and SAIOTEK), by the Spanish Ministry of Science and Innovation under the project NG-RADIATE (TEC2009-14201), and by the Spanish Ministry of Economy and Competitiveness under the project HEDYT-GBB (TEC2012- 33302

    Compensation of Physical Impairments in Multi-Carrier Communications

    Get PDF
    Among various multi-carrier transmission techniques, orthogonal frequency-division multiplexing (OFDM) is currently a popular choice in many wireless communication systems. This is mainly due to its numerous advantages, including resistance to multi-path distortions by using the cyclic prefix (CP) and a simple one-tap channel equalization, and efficient implementations based on the fast Fourier and inverse Fourier transforms. However, OFDM also has disadvantages which limit its use in some applications. First, the high out-of-band (OOB) emission in OFDM due to the inherent rectangular shaping filters poses a challenge for opportunistic and dynamic spectrum access where multiple users are sharing a limited transmission bandwidth. Second, a strict orthogonal synchronization between sub-carriers makes OFDM less attractive in low-power communication systems. Furthermore, the use of the CP in OFDM reduces the spectral efficiency and thus it may not be suitable for short-packet and low-latency transmission applications. Generalized frequency division multiplexing (GFDM) and circular filter-bank multi-carrier offset quadrature amplitude modulation (CFBMC-OQAM) have recently been considered as alternatives to OFDM for the air interface of wireless communication systems because they can overcome certain disadvantages in OFDM. Specifically, these two systems offer a flexibility in choosing the shaping filters so that the high OOB emission in OFDM can be avoided. Moreover, the strict orthogonality requirement in OFDM is relaxed in GFDM and CFBMC-OQAM which are, respectively, non-orthogonal and real-field orthogonal systems. Although a CP is also used in these two systems, the CP is added for a block of many symbols instead of only one symbol as in OFDM, which, therefore, improves the spectral efficiency. Given that the performance of a wireless communication system is affected by various physical impairments such as phase noise (PN), in-phase and quadrature (IQ) imbalance and imperfect channel estimation, this thesis proposes a number of novel signal processing algorithms to compensate for physical impairments in multi-carrier communication systems, including OFDM, GFDM and CFBMC-OQAM. The first part of the thesis examines the use of OFDM in full-duplex (FD) communication under the presence of PN, IQ imbalance and nonlinearities. FD communication is a promising technique since it can potentially double the spectral efficiency of the conventional half-duplex (HD) technique. However, the main challenge in implementing an FD wireless device is to cope with the self-interference (SI) imposed by the device's own transmission. The implementation of SI cancellation (SIC) faces many technical issues due to the physical impairments. In this part of research, an iterative algorithm is proposed in which the SI cancellation and detection of the desired signal benefit from each other. Specifically, in each iteration, the SI cancellation performs a widely linear estimation of the SI channel and compensates for the physical impairments to improve the detection performance of the desired signal. The detected desired signal is in turn removed from the received signal to improve SI channel estimation and SI cancellation in the next iteration. Results obtained show that the proposed algorithm significantly outperforms existing algorithms in SI cancellation and detection of the desired signal. In the next part of the thesis, the impact of PN and its compensation for CFBMC-OQAM systems are considered. The sources of performance degradation are first quantified. Then, a two-stage PN compensation algorithm is proposed. In the first stage, the channel frequency response and PN are estimated based on the transmission of a preamble, which is designed to minimize the channel mean squared error (MSE). In the second stage the PN compensation is performed using the estimate obtained from the first stage together with the transmitted pilot symbols. Simulation results obtained under practical scenarios show that the proposed algorithm effectively estimates the channel frequency response and compensates for the PN. The proposed algorithm is also shown to outperform an existing algorithm that implements iterative PN compensation when the PN impact is high. As a further development from the second part, the third part of the thesis considers the impacts of both PN and IQ imbalance and proposes a unified two-stage compensation algorithm for a general multi-carrier system, which can include OFDM, GFDM and CFBMC-OQAM. Specifically, in the first stage, the channel impulse response and IQ imbalance parameters are first estimated based on the transmission of a preamble. Given the estimates obtained from the first stage, in the second stage the IQ imbalance and PN are compensated in that order based on the pilot symbols for the rest of data transmission blocks. The preamble is designed such that the estimation of IQ imbalance does not depend on the channel and PN estimation errors. The proposed algorithm is then further extended to a multiple-input multiple-output (MIMO) system. For such a MIMO system, the preamble design is generalized so that the multiple IQ imbalances as well as channel impulse responses can be effectively estimated based on a single preamble block. Simulation results are presented and discussed in a variety of scenarios to show the effectiveness of the proposed algorithm
    • …
    corecore