102 research outputs found

    Seamless Infrastructure independent Multi Homed NEMO Handoff Using Effective and Timely IEEE 802.21 MIH triggers

    Full text link
    Handoff performance of NEMO BS protocol with existent improvement proposals is still not sufficient for real time and QoS-sensitive applications and further optimizations are needed. When dealing with single homed NEMO, handoff latency and packet loss become irreducible all optimizations included, so that it is impossible to meet requirements of the above applications. Then, How to combine the different Fast handoff approaches remains an open research issue and needs more investigation. In this paper, we propose a new Infrastructure independent handoff approach combining multihoming and intelligent Make-Before-Break Handoff. Based on required Handoff time estimation, L2 and L3 handoffs are initiated using effective and timely MIH triggers, reducing so the anticipation time and increasing the probability of prediction. We extend MIH services to provide tunnel establishment and switching before link break. Thus, the handoff is performed in background with no latency and no packet loss while pingpong scenario is almost avoided. In addition, our proposal saves cost and power consumption by optimizing the time of simultaneous use of multiple interfaces. We provide also NS2 simulation experiments identifying suitable parameter values used for estimation and validating the proposed mode

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 8/2/2010.In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme

    Survey Paper: Mobility Management in Heterogeneous Wireless Networks

    Get PDF
    AbstractEver increasing user demands and development of modern communication technologies have led to the evolution of communication networks from 1st Generation (1G) network to 4G heterogeneous networks. Further, 4G with heterogeneous network environment will provide features such as, “Always Best Connected”, “Anytime Anywhere” and seamless communication. Due to diverse characteristics of heterogeneous networks such as bandwidth, latency, cost, coverage and Quality of Service (QoS) etc., there are several open and unsolved issues namely mobility management, network administration, security etc. Hence, Designing proficient mobility management to seamlessly integrate heterogeneous wireless networks with all-IP is the most challenging issue in 4G networks. Mobile IPv6 (MIPv6) developed by Internet Engineering Task Force (IETF) has mobility management for the packet-switched devices of homogeneous wireless networks. Further, mobility management of homogeneous networks depends on network related parameter i.e., Received Signal Strength (RSS). However the mobility management of heterogeneous networks, not only depends on network related parameters, but also on terminal-velocity, battery power, location information, user-user profile & preferences and service-service capabilities & QoS etc. Designing mobility management with all-IP, while, considering issues such as context of networks, terminal, user and services is the main concern of industry and researchers in the current era

    Mobility-Aware Video Streaming in MIMO-Capable Heterogeneous Wireless Networks

    Get PDF
    Multiple input and multiple output (MIMO) is a well-known technique for the exploitation of the spatial multiplexing (MUX) and spatial diversity (DIV) gains that improve transmission quality and reliability. In this paper, we propose a quality-adaptive scheme for handover and forwarding that supports mobile-video-streaming services in MIMO-capable, heterogeneous wireless-access networks such as those for Wi-Fi and LTE. Unlike previous handover schemes, we propose an appropriate metric for the selection of the wireless technology and the MIMO mode, whereby a new address availability and the wireless-channel quality, both of which are in a new wireless-access network so that the handover and video-playing delays are reduced, are considered. While an MN maintains its original care-of address (oCoA), the video packets destined for the MN are forwarded with the MIMO technique (MUX mode or DIV mode) on top of a specific wireless technology from the previous Access Router (pAR) to the new Access Router (nAR) until they finally reach the MN; however, to guarantee a high video-streaming quality and to limit the video-packet-forwarding hops between the pAR and the nAR, the MN creates a new CoA (nCOA) within the delay threshold of the QoS/quality of experience (QoE) satisfaction result, and then, as much as possible, the video packet is forwarded with the MUX. Through extensive simulations, we show that the proposed scheme is a significant improvement upon the other schemes

    Enhancing PMIPv6 for Better Handover Performance among Heterogeneous Wireless Networks in a Micromobility Domain

    Get PDF
    This paper analyzes the reduction of handover delay in a network-based localized mobility management framework assisted by IEEE 802.21 MIH services. It compares the handover signaling procedures with host-based localized MIPv6 (HMIPv6), with network-based localized MIPv6 (PMIPv6), and with PMIPv6 assisted by IEEE 802.21 to show how much handover delay reduction can be achieved. Furthermore, the paper proposes and gives an in-depth analysis of PMIPv6 optimized with a handover coordinator (HC), which is a network-based entity, to further improve handover performance in terms of handover delay and packet loss while maintaining minimal signaling overhead in the air interface among converged heterogeneous wireless networks. Simulation and analytical results show that indeed handover delay and packet loss are reduced

    A network-based coordination design for seamless handover between heterogeneous wireless networks

    Get PDF
    Includes bibliographical references (leaves 136-144).The rapid growth of mobile and wireless communication over the last few years has spawned many different wireless networks. These heterogeneous wireless networks are envisioned to interwork over an IP-based infrastructure to realize ubiquitous network service provisioning for mobile users. Moreover, the availability of multiple-interface mobile nodes (MNs) will make it possible to communicate through any of these wireless access networks. This wireless network heterogeneity combined with the availability of multiple-interface MNs creates an environment where handovers between the different wireless access technologies become topical during mobility events. Therefore, operators with multiple interworking heterogeneous wireless networks will need to facilitate seamless vertical handovers among their multiple systems. Seamless vertical handovers ensure ubiquitous continuity to active connections hence satisfy the quality of experience of the mobile users

    Enhanced bicasting and buffering

    Get PDF
    Includes abstract. Includes bibliographical references
    • …
    corecore