702 research outputs found

    FPGA Acceleration of Pre-Alignment Filters for Short Read Mapping With HLS

    Get PDF
    Pre-alignment filters are useful for reducing the computational requirements of genomic sequence mappers. Most of them are based on estimating or computing the edit distance between sequences and their candidate locations in a reference genome using a subset of the dynamic programming table used to compute Levenshtein distance. Some of their FPGA implementations of use classic HDL toolchains, thus limiting their portability. Currently, most FPGA accelerators offered by heterogeneous cloud providers support C/C++ HLS. In this work, we implement and optimize several state-of-the-art pre-alignment filters using C/C++ based-HLS to expand their portability to a wide range of systems supporting the OpenCL runtime. Moreover, we perform a complete analysis of the performance and accuracy of the filters and analyze the implications of the results. The maximum throughput obtained by an exact filter is 95.1 MPairs/s including memory transfers using 100 bp sequences, which is the highest ever reported for a comparable system and more than two times faster than previous HDL-based results. The best energy efficiency obtained from the accelerator (not considering host CPU) is 2.1 MPairs/J, more than one order of magnitude higher than other accelerator-based comparable approaches from the state of the art.10.13039/501100008530-European Union Regional Development Fund (ERDF) within the framework of the ERDF Operational Program of Catalonia 2014-2020 with a grant of 50% of the total cost eligible under the Designing RISC-V based Accelerators for next generation computers project (DRAC) (Grant Number: [001-P-001723]) 10.13039/501100002809-Catalan Government (Grant Number: 2017-SGR-313 and 2017-SGR-1624) 10.13039/501100004837-Spanish Ministry of Science, Innovation and Universities (Grant Number: PID2020-113614RB-C21 and RTI2018-095209-B-C22)Peer ReviewedPostprint (published version

    New FPGA design tools and architectures

    Get PDF

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here
    corecore