2,595 research outputs found

    Adaptive Sliding Mode Contouring Control Design Based on Reference Adjustment and Uncertainty Compensation for Feed Drive Systems

    Get PDF
    Industrial feed drive systems, particularly, ball-screw and lead-screw feed drives are among the dominating motion components in production and manufacturing industries. They operate around the clock at high speeds for coping with the rising production demands. Adversely, high-speed motions cause mechanical vibrations, high-energy consumption, and insufficient accuracy. Although there are many control strategies in the literature, such as sliding mode and model predictive controls, further research is necessary for precision enhancement and energy saving. This study focused on design of an adaptive sliding mode contouring control based on reference adjustment and uncertainty compensation for feed drive systems. A combined reference adjustment and uncertainty compensator for precision motion of industrial feed drive systems were designed. For feasibility of the approach, simulation using matlab was conducted, and results are compared with those of an adaptive nonlinear sliding model contouring controller. The addition of uncertainty compensator showed a substantial improvement in performance by reducing the average contour error by 85.71% and the maximum contouring error by 78.64% under low speed compared to the adaptive sliding mode contouring controller with reference adjustment. Under high speed, the addition of uncertainty compensator reduced the average and absolute maximum contour errors by 4.48% and 10.13%, respectively. The experimental verification will be done in future. Keywords:    Machine tools, Feed drive systems, contouring control, Uncertainty dynamics, Sliding mode control

    An investigation into reducing the spindle acceleration energy consumption of machine tools

    Get PDF
    Machine tools are widely used in the manufacturing industry, and consume large amount of energy. Spindle acceleration appears frequently while machine tools are working. It produces power peak which is highly energy intensive. As a result, a considerable amount of energy is consumed by this acceleration during the use phase of machine tools. However, there is still a lack of understanding of the energy consumption of spindle acceleration. Therefore, this research aims to model the spindle acceleration energy consumption of computer numerical control (CNC) lathes, and to investigate potential approaches to reduce this part of consumption. The proposed model is based on the principle of spindle motor control and includes the calculation of moment of inertia for spindle drive system. Experiments are carried out based on a CNC lathe to validate the proposed model. The approaches for reducing the spindle acceleration energy consumption were developed. On the machine level, the approaches include avoiding unnecessary stopping and restarting of the spindle, shortening the acceleration time, lightweight design, proper use and maintenance of the spindle. On the system level, a machine tool selection criterion is developed for energy saving. Results show that the energy can be reduced by 10.6% to more than 50% using these approaches, most of which are practical and easy to implement

    Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies

    Get PDF
    In this research work, a Neural Network (NN) and Uniform Robust Exact Differentiator (URED) observer-based Fast Terminal Integral Sliding Mode Control (FTISMC) has been proposed for Oxygen Excess Ratio (OER) regulation of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) power systems for vehicular applications. The controller uses URED as an observer for supply manifold pressure estimation. NN is used to estimate the stack temperature which is unavailable. The suggested control method increased the PEMFC's effectiveness and durability while demonstrating the finite-time convergence of system trajectories. By controlling the air-delivery system in the presence of uncertain current requirements and measurement noise, the approach ensures maximum power efficiency. The Lyapunov stability theorem has been used to confirm the stability of the presented algorithm. In addition, the suggested method eliminated the chattering phenomenon and improved power efficiency. Given these noteworthy characteristics, the research has the potential to decrease sensor dependence and production costs while also improving the transient and steady-state response in vehicular applications

    Advanced Control of Piezoelectric Actuators.

    Get PDF
    168 p.A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un papel importante como tecnología puntera donde la tendencia a la reducción de tamaño de las herramientas industriales ha sido clave. Los procesos industriales comenzaron a demandar precisión en el rango de nanómetros a micrómetros. Pese a que los actuadores convencionales no pueden reducirse lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tecnología innovadora en este campo y su rendimiento aún está en estudio en la comunidad científica. Los actuadores piezoeléctricos se usan comúnmente en micro y nanomecatrónica para aplicaciones de posicionamiento debido a su alta resolución y fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100 Newtons) en comparación con su tamaño. Todas estas características también se pueden combinar con una actuación rápida y rigidez, según los requisitos de la aplicación. Por lo tanto, con estas características, los actuadores piezoeléctricos pueden ser utilizados en una amplia variedad de aplicaciones industriales. Los efectos negativos, como la fluencia, vibraciones y la histéresis, se estudian comúnmente para mejorar el rendimiento cuando se requiere una alta precisión. Uno de los efectos que más reduce el rendimiento de los PEA es la histéresis. Esto se produce especialmente cuando el actuador está en una aplicación de guiado, por lo que la histéresis puede inducir errores que pueden alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como un efecto generado por la combinación de acciones mecánicas y eléctricas que depende de estados previos. La histéresis se puede reducir principalmente mediante dos estrategias: rediseño de materiales o algoritmos de control tipo feedback. El rediseño de material comprende varias desventajas por lo que el motivo principal de esta tesis está enfocado al diseño de algoritmos de control para reducir la histéresis. El objetivo principal de esta tesis es el desarrollo de estrategias de control avanzadas que puedan mejorar la precisión de seguimiento de los actuadores piezoeléctricos comerciale

    Influence of controller parameters on the life of ball screw feed drives

    Get PDF
    The ball screws are the machine component most frequently used for transforming rotational into linear motion of a feed drive, to position the machine tool components carrying the cutting tool to the desired location. A failure of the ball screw usually leads to a total breakdown of the axis; therefore, the attainable life of this component is an important issue concerning the availability and productivity of modern machine tools. This article presents an approach to evaluate the influence of control parameters on the fatigue life of ball screws based on simulation, by means of a numerical model of a machine tool servo-axis. Ball screw life was evaluated with different conditions, varying the position loop main proportional gain and the kinematic limit conditions for trajectory generation. Furthermore, the mathematical model was used to evaluate optimal control gain and trajectory conditions for a machine tool based on the achievable life span of the ball screw feed drive system, with regard to the desirable performances, such as position accuracy, promptness, and cutoff frequency

    Control of Proton Exchange Membrane Fuel Cell System

    Get PDF
    265 p.In the era of sustainable development, proton exchange membrane (PEM) fuel cell technology has shown significant potential as a renewable energy source. This thesis focuses on improving the performance of the PEM fuel cell system through the use of appropriate algorithms for controlling the power interface. The main objective is to find an effective and optimal algorithm or control law for keeping the stack operating at an adequate power point. Add to this, it is intended to apply the artificial intelligence approach for studying the effect of temperature and humidity on the stack performance. The main points addressed in this study are : modeling of a PEM fuel cell system, studying the effect of temperature and humidity on the PEM fuel cell stack, studying the most common used power converters in renewable energy systems, studying the most common algorithms applied on fuel cell systems, design and implementation of a new MPPT control method for the PEM fuel cell system

    Energy Management

    Get PDF
    Forecasts point to a huge increase in energy demand over the next 25 years, with a direct and immediate impact on the exhaustion of fossil fuels, the increase in pollution levels and the global warming that will have significant consequences for all sectors of society. Irrespective of the likelihood of these predictions or what researchers in different scientific disciplines may believe or publicly say about how critical the energy situation may be on a world level, it is without doubt one of the great debates that has stirred up public interest in modern times. We should probably already be thinking about the design of a worldwide strategic plan for energy management across the planet. It would include measures to raise awareness, educate the different actors involved, develop policies, provide resources, prioritise actions and establish contingency plans. This process is complex and depends on political, social, economic and technological factors that are hard to take into account simultaneously. Then, before such a plan is formulated, studies such as those described in this book can serve to illustrate what Information and Communication Technologies have to offer in this sphere and, with luck, to create a reference to encourage investigators in the pursuit of new and better solutions

    Multiple Heat Exchanger Cooling System for Automotive Applications – Design, Mathematical Modeling, and Experimental Observations

    Get PDF
    The design of the automotive cooling systems has slowly evolved from engine-driven mechanical to computer-controlled electro-mechanical components. With the addition of computer-controlled variable speed actuators, cooling system architectures have been updated to maximize performance and efficiency. By switching from one large radiator to multiple smaller radiators with individual flow control valves, the heat rejection requirements may be precisely adjusted. The combination of computer regulated thermal management system should reduce power consumption while satisfying temperature control objectives. This research focuses on developing and analyzing a multi-radiator system architecture for implementation in ground transportation applications. The premise is to use a single radiator during low thermal loads and activate the second radiator during high thermal loading scenarios. Ground vehicles frequently use different radiators for each component that needs cooling (e.g., engine blocks, electronics, and motors) since they have different optimal working temperatures. The use of numerous smaller heat exchangers adds more energy-management features and alternative routes for carrying on with operation in the event of a crucial subsystem failure. Moreover, despite cooling systems being designed for maximum thermal loads, most vehicles typically operate at a small fraction of their peak values. To study and examine the planned multi-heat exchanger cooling system concepts, various computer simulations and experimental tests were performed. A nonlinear state space model, featuring input and output heat flow paradigms, was developed using a multi-node resistance-capacitance thermal model. The heat removal rate from the radiator(s) was estimated using the -NTU method as downstream fluid temperatures were not required. The system performance was studied for two driving cycles proposed by the Environmental Protection Agency (EPA) – urban and highway driving schedules. The computer simulation was validated using the laboratory setup in the High Bay Area of Fluor Daniel Engineering Innovation Building. The configuration features computer controlled variable speed electric motor driven coolant pump and independent variable speed fans for each radiator to provide desired fluid flow rates. The pump and fan power consumptions are approximately 0.8-1.2 kW and 0.4-3.2 kW, which corresponds to coolant and air flow rates of 0.2-1.5 kg/s and 0.5-1.75 kg/s, respectively. Two servo motor-controlled gate valves limit the coolant outlet from each radiator. Various thermocouples and a magnetic flow sensor record test data in real time using a dSpace DS1103 data acquisition control system. Designing and analyzing a nonlinear control architecture for the suggested system was the last phase in the study process. A nonlinear controller equipped TMS should offer higher energy efficiency and overall system performance. Three controllers—sliding mode, stateflow, and classical—were designed and implemented in Matlab/Simulink and placed onto the dSpace hardware. The sliding mode controller is recommended for high performance applications since it offers steady temperature tracking, 5oC, an acceptable response time, 120 sec, but suffers from frequent changes in fan speed. The stateflow controller exhibited the fewest fan speed oscillations, the fastest response time, 88 sec, and the smallest temperature offset, 3oC, it is advised for use in common passenger vehicle applications. Both controllers need around six minutes to warm up. The traditional controller, meanwhile, had the quickest warmup, 600 sec, but the slowest response time, 215 sec. Nonlinear cooling systems are essential for maintaining component temperatures which will enable vehicle reliability, and maximize performance given the focus on hybrid and electric vehicles

    Research and Implement of PMSM Regenerative Braking Control for Electric Vehicle

    Get PDF
    As the society pays more and more attention to the environment pollution and energy crisis, the electric vehicle (EV) development also entered in a new era. With the development of motor speed control technology and the improvement of motor performance, although the dynamic performance and economical cost of EVs are both better than the internal-combustion engine vehicle (ICEV), the driving range limit and charging station distribution are two major problems which limit the popularization of EVs. In order to extend driving range for EVs, regenerative braking (RB) emerges which is able to recover energy during the braking process to improve the energy efficiency. This thesis aims to investigate the RB based pure electric braking system and its implementation. There are many forms of RB system such as fully electrified braking system and blended braking system (BBS) which is equipped both electric RB system and hydraulic braking (HB) system. In this thesis the main research objective is the RB based fully electrified braking system, however, RB system cannot satisfy all braking situation only by itself. Because the regenerating electromagnetic torque may be too small to meet the braking intention of the driver when the vehicle speed is very low and the regenerating electromagnetic torque may be not enough to stop the vehicle as soon as possible in the case of emergency braking. So, in order to ensure braking safety and braking performance, braking torque should be provided with different forms regarding different braking situation and different braking intention. In this thesis, braking torque is classified into three types. First one is normal reverse current braking when the vehicle speed is too low to have enough RB torque. Second one is RB torque which could recover kinetic energy by regenerating electricity and collecting electric energy into battery packs. The last braking situation is emergency where the braking torque is provided by motor plugging braking based on the optimal slip ratio braking control strategy. Considering two indicators of the RB system which are regenerative efficiency and braking safety, a trade-off point should be found and the corresponding control strategy should be designed. In this thesis, the maximum regenerative efficiency is obtained by a braking torque distribution strategy between front wheel and rear wheel based on a maximum available RB torque estimation method and ECE-R13 regulation. And the emergency braking performance is ensured by a novel fractional-order integral sliding mode control (FOISMC) and numerical simulations show that the control performance is better than the conventional sliding mode controller
    corecore