323,270 research outputs found

    Reduction Model Approach for Systems with a Time-Varying Delay

    Get PDF
    International audienceWe provide a reduction model approach for achieving global exponential stabilization of linear systems with a time-varying pointwise delay in the input. We allow the delay to be discontinuous and uncertain. We also provide a stability result based on a different dynamic extension that ensures input-to-state stability with respect to additive uncertainties on the dynamics. Instead of the usual Lyapunov-Krasovskii or Razumikhin methods, we use a trajectory based approach

    Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer

    Full text link
    [EN] The problem of output stabilization and disturbance rejection for input-delayed systems is tackled in this work. First, a suitable transformation is introduced to translate mismatched disturbances into an equivalent input disturbance. Then, an extended state observer is combined with a predictive observer structure to obtain a future estimation of both the state and the disturbance. A disturbance model is assumed to be known but attenuation of unmodeled components is also considered. The stabilization is proved via Lyapunov-Krasovskii functionals, leading to sufficient conditions in terms of linear matrix inequalities for the closed-loop analysis and parameter tuning. The proposed strategy is illustrated through a numerical example.PROMETEOII/2013/004; Conselleria d'Educacio; Generalitat Valenciana, Grant/Award Number: TIN2014-56158-C4-4-P-AR; Ministerio de Economia y Competitividad, Grant/Award Number: FPI-UPV 2014; Universitat Politecnica de ValenciaSanz Diaz, R.; García Gil, PJ.; Fridman, E.; Albertos Pérez, P. (2018). Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control. 28(6):2457-2467. https://doi.org/10.1002/rnc.4027S24572467286Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Watanabe, K., & Ito, M. (1981). A process-model control for linear systems with delay. IEEE Transactions on Automatic Control, 26(6), 1261-1269. doi:10.1109/tac.1981.1102802Astrom, K. J., Hang, C. C., & Lim, B. C. (1994). A new Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 39(2), 343-345. doi:10.1109/9.272329Matausek, M. R., & Micic, A. D. (1996). A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 41(8), 1199-1203. doi:10.1109/9.533684García, P., & Albertos, P. (2008). A new dead-time compensator to control stable and integrating processes with long dead-time. Automatica, 44(4), 1062-1071. doi:10.1016/j.automatica.2007.08.022Normey-Rico, J. E., & Camacho, E. F. (2009). Unified approach for robust dead-time compensator design. Journal of Process Control, 19(1), 38-47. doi:10.1016/j.jprocont.2008.02.003Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Sanz, R., Garcia, P., & Albertos, P. (2016). Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica, 72, 205-208. doi:10.1016/j.automatica.2016.05.019Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131-138. doi:10.1016/j.automatica.2015.05.013Basturk, H. I. (2017). Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica, 76, 169-176. doi:10.1016/j.automatica.2016.10.006Sanz, R., Garcia, P., Albertos, P., & Zhong, Q.-C. (2016). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control, 27(10), 1826-1840. doi:10.1002/rnc.3639Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control, 48(12), 2207-2212. doi:10.1109/tac.2003.820147Zhong, Q.-C. (2004). On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementations. IEEE Transactions on Automatic Control, 49(11), 2074-2080. doi:10.1109/tac.2004.837531Zhou, B., Lin, Z., & Duan, G.-R. (2012). Truncated predictor feedback for linear systems with long time-varying input delays. Automatica, 48(10), 2387-2399. doi:10.1016/j.automatica.2012.06.032Zhou, B., Li, Z.-Y., & Lin, Z. (2013). On higher-order truncated predictor feedback for linear systems with input delay. International Journal of Robust and Nonlinear Control, 24(17), 2609-2627. doi:10.1002/rnc.3012Besançon G Georges D Benayache Z Asymptotic state prediction for continuous-time systems with delayed input and application to control IEEE 2007 Kos, GreeceNajafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86(4), 599-609. doi:10.1080/00207179.2012.751627Léchappé V Moulay E Plestan F Dynamic observation-prediction for LTI systems with a time-varying delay in the input IEEE 2016 Las Vegas, NVCacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. International Journal of Robust and Nonlinear Control, 26(16), 3524-3540. doi:10.1002/rnc.3517Mazenc, F., & Malisoff, M. (2017). Stabilization of Nonlinear Time-Varying Systems Through a New Prediction Based Approach. IEEE Transactions on Automatic Control, 62(6), 2908-2915. doi:10.1109/tac.2016.2600500Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Fridman, E. (2003). Output regulation of nonlinear systems with delay. Systems & Control Letters, 50(2), 81-93. doi:10.1016/s0167-6911(03)00131-2Isidori, A., & Byrnes, C. I. (1990). Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 35(2), 131-140. doi:10.1109/9.45168Ding, Z. (2003). Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica, 39(3), 471-479. doi:10.1016/s0005-1098(02)00251-0Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095. doi:10.1109/tie.2015.2478397Fridman, E., & Shaked, U. (2002). An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 47(11), 1931-1937. doi:10.1109/tac.2002.804462Fridman, E., & Orlov, Y. (2009). Exponential stability of linear distributed parameter systems with time-varying delays. Automatica, 45(1), 194-201. doi:10.1016/j.automatica.2008.06.00

    Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator

    Full text link
    [EN] This paper deals with the problem of stabilizing a class of input-delayed systems with (possibly) nonlinear uncertainties by using explicit delay compensation. It is well known that plain predictive schemes lack robustness with respect to uncertain model parameters. In this work, an uncertainty estimator is derived for input-delay systems and combined with a modified state predictor, which uses current available information of the estimated uncertainties. Furthermore, based on Lyapunov-Krasovskii functionals, a computable criterion to check robust stability of the closed-loop is developed and cast into a minimization problem constrained to an LMI. Additionally, for a given input delay, an iterative-LMI algorithm is proposed to design stabilizing tuning parameters. The main results are illustrated and validated using a numerical example with a second-order dynamic system.This work was partially supported by projects PROMETEOII/2013/004, Conselleria d Educació, Generalitat Valenciana, and TIN2014-56158-C4-4-P-AR, Ministerio de Economía y Competitividad, Spain.Sanz Diaz, R.; García Gil, PJ.; Albertos Pérez, P.; Zhong, Q. (2017). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control. 27(10):1826-1840. https://doi.org/10.1002/rnc.3639S182618402710Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135Normey-Rico, J. E., Bordons, C., & Camacho, E. F. (1997). Improving the robustness of dead-time compensating PI controllers. Control Engineering Practice, 5(6), 801-810. doi:10.1016/s0967-0661(97)00064-6Michiels, W., & Niculescu, S.-I. (2003). On the delay sensitivity of Smith Predictors. International Journal of Systems Science, 34(8-9), 543-551. doi:10.1080/00207720310001609057Normey-Rico, J. E., & Camacho, E. F. (2008). Dead-time compensators: A survey. Control Engineering Practice, 16(4), 407-428. doi:10.1016/j.conengprac.2007.05.006Guzmán, J. L., García, P., Hägglund, T., Dormido, S., Albertos, P., & Berenguel, M. (2008). Interactive tool for analysis of time-delay systems with dead-time compensators. Control Engineering Practice, 16(7), 824-835. doi:10.1016/j.conengprac.2007.09.002Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Moon, Y. S., Park, P., & Kwon, W. H. (2001). Robust stabilization of uncertain input-delayed systems using reduction method. Automatica, 37(2), 307-312. doi:10.1016/s0005-1098(00)00145-xYue, D. (2004). Robust stabilization of uncertain systems with unknown input delay. Automatica, 40(2), 331-336. doi:10.1016/j.automatica.2003.10.005Yue, D., & Han, Q.-L. (2005). Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 41(2), 233-240. doi:10.1016/j.automatica.2004.09.006Lozano, R., Castillo, P., Garcia, P., & Dzul, A. (2004). Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, 40(4), 603-612. doi:10.1016/j.automatica.2003.10.007Gonzalez, A., Garcia, P., Albertos, P., Castillo, P., & Lozano, R. (2012). Robustness of a discrete-time predictor-based controller for time-varying measurement delay. Control Engineering Practice, 20(2), 102-110. doi:10.1016/j.conengprac.2011.09.001Karafyllis, I., & Krstic, M. (2013). Robust predictor feedback for discrete-time systems with input delays. International Journal of Control, 86(9), 1652-1663. doi:10.1080/00207179.2013.792005Krstic, M. (2010). Input Delay Compensation for Forward Complete and Strict-Feedforward Nonlinear Systems. IEEE Transactions on Automatic Control, 55(2), 287-303. doi:10.1109/tac.2009.2034923Bekiaris-Liberis, N., & Krstic, M. (2011). Compensation of Time-Varying Input and State Delays for Nonlinear Systems. Journal of Dynamic Systems, Measurement, and Control, 134(1). doi:10.1115/1.4005278Karafyllis, I., Malisoff, M., Mazenc, F., & Pepe, P. (Eds.). (2016). Recent Results on Nonlinear Delay Control Systems. Advances in Delays and Dynamics. doi:10.1007/978-3-319-18072-4Cacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. International Journal of Robust and Nonlinear Control, 26(16), 3524-3540. doi:10.1002/rnc.3517Fridman, E., & Shaked, U. (2002). An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 47(11), 1931-1937. doi:10.1109/tac.2002.804462Fridman, E., & Shaked, U. (2002). A descriptor system approach to H/sub ∞/ control of linear time-delay systems. IEEE Transactions on Automatic Control, 47(2), 253-270. doi:10.1109/9.983353Chen, W.-H., & Zheng, W. X. (2006). On improved robust stabilization of uncertain systems with unknown input delay. Automatica, 42(6), 1067-1072. doi:10.1016/j.automatica.2006.02.015Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Roh, Y.-H., & Oh, J.-H. (1999). Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation. Automatica, 35(11), 1861-1865. doi:10.1016/s0005-1098(99)00106-5Bresch-Pietri, D., & Krstic, M. (2009). Adaptive trajectory tracking despite unknown input delay and plant parameters. Automatica, 45(9), 2074-2081. doi:10.1016/j.automatica.2009.04.027Kamalapurkar, R., Fischer, N., Obuz, S., & Dixon, W. E. (2016). Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems. IEEE Transactions on Automatic Control, 61(3), 834-839. doi:10.1109/tac.2015.2451472Chen, W.-H., Ohnishi, K., & Guo, L. (2015). Advances in Disturbance/Uncertainty Estimation and Attenuation [Guest editors’ introduction]. IEEE Transactions on Industrial Electronics, 62(9), 5758-5762. doi:10.1109/tie.2015.2453347Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095. doi:10.1109/tie.2015.2478397Sariyildiz E Ohnishi K Design constraints of disturbance observer in the presence of time delay 2013 IEEE International Conference on Mechatronics (ICM) Vicenza, Italy 2013 69 74Wang, Q.-G., Hang, C. C., & Yang, X.-P. (2001). Single-loop controller design via IMC principles. Automatica, 37(12), 2041-2048. doi:10.1016/s0005-1098(01)00170-4Zheng, Q., & Gao, Z. (2014). Predictive active disturbance rejection control for processes with time delay. ISA Transactions, 53(4), 873-881. doi:10.1016/j.isatra.2013.09.021Chen, M., & Chen, W.-H. (2010). Disturbance-observer-based robust control for time delay uncertain systems. International Journal of Control, Automation and Systems, 8(2), 445-453. doi:10.1007/s12555-010-0233-5Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Zhong, Q.-C., & Rees, D. (2004). Control of Uncertain LTI Systems Based on an Uncertainty and Disturbance Estimator. Journal of Dynamic Systems, Measurement, and Control, 126(4), 905-910. doi:10.1115/1.1850529Yong He, Min Wu, & Jin-Hua She. (2005). Improved bounded-real-lemma representation and H/sub /spl infin// control of systems with polytopic uncertainties. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(7), 380-383. doi:10.1109/tcsii.2005.850418CAO, Y.-Y., LAM, J., & SUN, Y.-X. (1998). Static Output Feedback Stabilization: An ILMI Approach. Automatica, 34(12), 1641-1645. doi:10.1016/s0005-1098(98)80021-6Marler, R. T., & Arora, J. S. (2009). The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, 41(6), 853-862. doi:10.1007/s00158-009-0460-7Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Solomon, O., & Fridman, E. (2013). New stability conditions for systems with distributed delays. Automatica, 49(11), 3467-3475. doi:10.1016/j.automatica.2013.08.025Huaizhong Li, & Minyue Fu. (1997). A linear matrix inequality approach to robust H/sub ∞/ filtering. IEEE Transactions on Signal Processing, 45(9), 2338-2350. doi:10.1109/78.622956Šiljak, D. D., & Stipanovic, D. M. (2000). Robust stabilization of nonlinear systems: The LMI approach. Mathematical Problems in Engineering, 6(5), 461-493. doi:10.1155/s1024123x0000143

    STABILITY AND PERFORMANCE OF NETWORKED CONTROL SYSTEMS

    Get PDF
    Network control systems (NCSs), as one of the most active research areas, are arousing comprehensive concerns along with the rapid development of network. This dissertation mainly discusses the stability and performance of NCSs into the following two parts. In the first part, a new approach is proposed to reduce the data transmitted in networked control systems (NCSs) via model reduction method. Up to our best knowledge, we are the first to propose this new approach in the scientific and engineering society. The "unimportant" information of system states vector is truncated by balanced truncation method (BTM) before sending to the networked controller via network based on the balance property of the remote controlled plant controllability and observability. Then, the exponential stability condition of the truncated NCSs is derived via linear matrix inequality (LMI) forms. This method of data truncation can usually reduce the time delay and further improve the performance of the NCSs. In addition, all the above results are extended to the switched NCSs. The second part presents a new robust sliding mode control (SMC) method for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties, to introduce adjustable parameters for control design along with the SMC method, and new Lyapunov-type functional. Then, a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems are derived via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1 by the proposed control rule. Furthermore, the novel Lyapunov-type functional for the uncertain stochastic systems is used to design a new robust control for the general case where the derivative of time-varying delay can be any bounded value (e.g., greater than one). It is theoretically proved that the conservatism of the proposed method is less than the previous methods. All theoretical proofs are presented in the dissertation. The simulations validate the correctness of the theoretical results and have better performance than the existing results

    Robust H∞ filtering for time-delay systems with probabilistic sensor faults

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, a new robust H∞ filtering problem is investigated for a class of time-varying nonlinear system with norm-bounded parameter uncertainties, bounded state delay, sector-bounded nonlinearity and probabilistic sensor gain faults. The probabilistic sensor reductions are modeled by using a random variable that obeys a specific distribution in a known interval [alpha,beta], which accounts for the following two phenomenon: 1) signal stochastic attenuation in unreliable analog channel and 2) random sensor gain reduction in severe environment. The main task is to design a robust H∞ filter such that, for all possible uncertain measurements, system parameter uncertainties, nonlinearity as well as time-varying delays, the filtering error dynamics is asymptotically mean-square stable with a prescribed H∞ performance level. A sufficient condition for the existence of such a filter is presented in terms of the feasibility of a certain linear matrix inequality (LMI). A numerical example is introduced to illustrate the effectiveness and applicability of the proposed methodology

    Low order channel estimation for CDMA systems

    Get PDF
    New approaches and algorithms are developed for the identification and estimation of low order models that represent multipath channel effects in Code Division Multiple Access (CDMA) communication systems. Based on these parsimonious channel models, low complexity receivers such as RAKE receivers are considered to exploit these propagation effects and enhance the system performance. We consider the scenario where multipath is frequency selective slowly fading and where the channel components including delays and attenuation coefficients are assumed to be constant over one or few signalling intervals. We model the channel as a long FIR-like filter (or a tapped delay line filter) with the number of taps related to the ratio between the channel delay-spread and the chip duration. Due to the high data rate of new CDMA systems, the channel length in terms of the chip duration will be very large. With classical channel estimation techniques this will result in poor estimates of many of the channel parameters where most of them are zero leading to a reduction in the system performance. Unlike classical techniques which estimate directly the channel response given the number of taps or given an estimate of the channel length, the proposed techniques in this work will firstly identify the significant multipath parameters using model selection techniques, then estimate these identified parameters. Statistical tests are proposed to determine whether or not each individual parameter is significant. A low complexity RAKE receiver is then considered based on estimates of these identified parameters only. The level of significance with which we will make this assertion will be controlled based on statistical tests such as multiple hypothesis tests. Frequency and time domain based approaches and model selection techniques are proposed to achieve the above proposed objectives.The frequency domain approach for parsimonious channel estimation results in an efficient implementation of RAKE receivers in DS-CDMA systems. In this approach, we consider a training based strategy and estimate the channel delays and attenuation using the averaged periodogram and modified time delay estimation techniques. We then use model selection techniques such as the sphericity test and multiple hypotheses tests based on F-Statistics to identify the model order and select the significant channel paths. Simulations show that for a pre-defined level of significance, the proposed technique correctly identifies the significant channel parameters and the parsimonious RAKE receiver shows improved statistical as well as computational performance over classical methods. The time domain approach is based on the Bootstrap which is appropriate for the case when the distribution of the test statistics required by the multiple hypothesis tests is unknown. In this approach we also use short training data and model the channel response as an FIR filter with unknown length. Model parameters are then estimated using low complexity algorithms in the time domain. Based on these estimates, bootstrap based multiple hypotheses tests are applied to identify the non-zero coefficients of the FIR filter. Simulation results demonstrate the power of this technique for RAKE receivers in unknown noise environments. Finally we propose adaptive blind channel estimation algorithms for CDMA systems. Using only the spreading code of the user of interest and the received data sequence, four different adaptive blind estimation algorithms are proposed to estimate the impulse response of frequency selective and frequency non-selective fading channels. Also the idea is based on minimum variance receiver techniques. Tracking of a frequency selective varying fading channel is also considered.A blind based hierarchical MDL model selection method is also proposed to select non-zero parameters of the channel response. Simulation results show that the proposed algorithms perform better than previously proposed algorithms. They have lower complexity and have a faster convergence rate. The proposed algorithms can also be applied to the design of adaptive blind channel estimation based RAKE receivers

    On the computation of π\pi-flat outputs for differential-delay systems

    Full text link
    We introduce a new definition of π\pi-flatness for linear differential delay systems with time-varying coefficients. We characterize π\pi- and π\pi-0-flat outputs and provide an algorithm to efficiently compute such outputs. We present an academic example of motion planning to discuss the pertinence of the approach.Comment: Minor corrections to fit with the journal versio
    corecore