7,665 research outputs found

    Network Symmetry and Binocular Rivalry Experiments

    Get PDF
    Hugh Wilson has proposed a class of models that treat higher-level decision making as a competition between patterns coded as levels of a set of attributes in an appropriately defined network (Cortical Mechanisms of Vision, pp. 399–417, 2009; The Constitution of Visual Consciousness: Lessons from Binocular Rivalry, pp. 281–304, 2013). In this paper, we propose that symmetry-breaking Hopf bifurcation from fusion states in suitably modified Wilson networks, which we call rivalry networks, can be used in an algorithmic way to explain the surprising percepts that have been observed in a number of binocular rivalry experiments. These rivalry networks modify and extend Wilson networks by permitting different kinds of attributes and different types of coupling. We apply this algorithm to psychophysics experiments discussed by Kovács et al. (Proc. Natl. Acad. Sci. USA 93:15508–15511, 1996), Shevell and Hong (Vis. Neurosci. 23:561–566, 2006; Vis. Neurosci. 25:355–360, 2008), and Suzuki and Grabowecky (Neuron 36:143–157, 2002). We also analyze an experiment with four colored dots (a simplified version of a 24-dot experiment performed by Kovács), and a three-dot analog of the four-dot experiment. Our algorithm predicts surprising differences between the three- and four-dot experiments

    Perceptual learning of binocular interactions.

    Get PDF
    This dissertation focuses on the mechanisms and implications of perceptual learning of binocular interactions. Perceptual learning is an important means of adapting to the changing environment, demonstrating the possibility of neural plasticity in adults and providing a powerful approach to investigate dynamic processes in the mature perceptual system. Most studies on perceptual learning have focused on learning mechanisms that target excitatory circuits. However, we recognize that the inhibitory circuits also play a critical role in cortical plasticity, as shown by growing evidence from neurophysiological studies, and that the inhibitory connection is more dynamic than the excitatory connection in adult visual cortex. Thus, our goal is to design a psychophysical method that exploits the contribution of the inhibitory circuits to perceptual learning. This in turn helps us to implement more efficient learning paradigms for visual training. Our study capitalizes on properties of the binocular visual system, a good system for exploring both excitatory and inhibitory mechanisms. We first measured local Sensory Eye Dominance (SED) and showed that excessive SED can impede stereopsis ability. To reduce SED, a typical perceptual training paradigm (Push-only protocol) would only stimulate the weak eye to target the excitatory network. In contrast, we designed a novel Push-Pull training protocol to target both the excitatory and inhibitory networks. By presenting binocular rivalry stimuli to both eyes, the push-pull protocol can excite the visual pathway of the weak eye (push), while inhibiting the visual pathway of the strong eye (pull). We found that the push-pull training protocol, mainly affecting the early visual processes, is more effective than the push-only protocol in reducing SED and enhancing stereoacuity, even beyond the focus of top-down attention through a stimulus-driven mechanism. We further demonstrated that the perceptual learning induced by the push-pull protocol involves both feature-based and boundary-based processes, and that the learning effect can be generalized to other stimulus dimensions within early feature channels. Therefore, our psychophysical study demonstrates the important role of inhibitory synaptic circuits in neural plasticity of the adult brain, and that our push-pull training protocol can be a more effective clinical training paradigm to treat amblyopia

    The Neural Correlates of Consciousness - An Update

    Get PDF
    This review examines recent advances in the study of brain correlates of consciousness. First, we briefly discuss some useful distinctions between consciousness and other brain functions. We then examine what has been learned by studying global changes in the level of consciousness, such as sleep, anesthesia, and seizures. Next we consider some of the most common paradigms used to study the neural correlates for specific conscious percepts and examine what recent findings say about the role of different brain regions in giving rise to consciousness for that percept. Then we discuss dynamic aspects of neural activity, such as sustained versus phasic activity, feedforward versus reentrant activity, and the role of neural synchronization. Finally, we briefly consider how a theoretical analysis of the fundamental properties of consciousness can usefully complement neurobiological studies

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Acetylcholine neuromodulation in normal and abnormal learning and memory: vigilance control in waking, sleep, autism, amnesia, and Alzheimer's disease

    Get PDF
    This article provides a unified mechanistic neural explanation of how learning, recognition, and cognition break down during Alzheimer's disease, medial temporal amnesia, and autism. It also clarifies whey there are often sleep disturbances during these disorders. A key mechanism is how acetylcholine modules vigilance control in cortical layer

    Stochasticity from function -- why the Bayesian brain may need no noise

    Get PDF
    An increasing body of evidence suggests that the trial-to-trial variability of spiking activity in the brain is not mere noise, but rather the reflection of a sampling-based encoding scheme for probabilistic computing. Since the precise statistical properties of neural activity are important in this context, many models assume an ad-hoc source of well-behaved, explicit noise, either on the input or on the output side of single neuron dynamics, most often assuming an independent Poisson process in either case. However, these assumptions are somewhat problematic: neighboring neurons tend to share receptive fields, rendering both their input and their output correlated; at the same time, neurons are known to behave largely deterministically, as a function of their membrane potential and conductance. We suggest that spiking neural networks may, in fact, have no need for noise to perform sampling-based Bayesian inference. We study analytically the effect of auto- and cross-correlations in functionally Bayesian spiking networks and demonstrate how their effect translates to synaptic interaction strengths, rendering them controllable through synaptic plasticity. This allows even small ensembles of interconnected deterministic spiking networks to simultaneously and co-dependently shape their output activity through learning, enabling them to perform complex Bayesian computation without any need for noise, which we demonstrate in silico, both in classical simulation and in neuromorphic emulation. These results close a gap between the abstract models and the biology of functionally Bayesian spiking networks, effectively reducing the architectural constraints imposed on physical neural substrates required to perform probabilistic computing, be they biological or artificial

    Recent advances in symmetric and network dynamics

    Get PDF
    We summarize some of the main results discovered over the past three decades concerning symmetric dynamical systems and networks of dynamical systems, with a focus on pattern formation. In both of these contexts, extra constraints on the dynamical system are imposed, and the generic phenomena can change. The main areas discussed are time-periodic states, mode interactions, and non-compact symmetry groups such as the Euclidean group. We consider both dynamics and bifurcations. We summarize applications of these ideas to pattern formation in a variety of physical and biological systems, and explain how the methods were motivated by transferring to new contexts RenĂ© Thom's general viewpoint, one version of which became known as “catastrophe theory.” We emphasize the role of symmetry-breaking in the creation of patterns. Topics include equivariant Hopf bifurcation, which gives conditions for a periodic state to bifurcate from an equilibrium, and the H/K theorem, which classifies the pairs of setwise and pointwise symmetries of periodic states in equivariant dynamics. We discuss mode interactions, which organize multiple bifurcations into a single degenerate bifurcation, and systems with non-compact symmetry groups, where new technical issues arise. We transfer many of the ideas to the context of networks of coupled dynamical systems, and interpret synchrony and phase relations in network dynamics as a type of pattern, in which space is discretized into finitely many nodes, while time remains continuous. We also describe a variety of applications including animal locomotion, Couette–Taylor flow, flames, the Belousov–Zhabotinskii reaction, binocular rivalry, and a nonlinear filter based on anomalous growth rates for the amplitude of periodic oscillations in a feed-forward network

    Rigid patterns of synchrony for equilibria and periodic cycles in network dynamics

    Get PDF
    We survey general results relating patterns of synchrony to network topology, applying the formalism of coupled cell systems. We also discuss patterns of phase-locking for periodic states, where cells have identical waveforms but regularly spaced phases. We focus on rigid patterns, which are not changed by small perturbations of the differential equation. Symmetry is one mechanism that creates patterns of synchrony and phase-locking. In general networks, there is another: balanced colorings of the cells. A symmetric network may have anomalous patterns of synchrony and phase-locking that are not consequences of symmetry. We introduce basic notions on coupled cell networks and their associated systems of admissible differential equations. Periodic states also possess spatio-temporal symmetries, leading to phase relations; these are classified by the H/K theorem and its analog for general networks. Systematic general methods for computing the stability of synchronous states exist for symmetric networks, but stability in general networks requires methods adapted to special classes of model equations

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Beyond the Knowledge-Based Theory of the Geographic Cluster

    Get PDF
    The knowledge-based theory of the geographic cluster represents a major attempt to re-conceptualize clusters, in essence arguing that the localization of firms in similar and related industries stimulates learning and innovation, giving a competitive advantage to clustered firms. This paper critically examines the knowledge-based theory the cluster, arguing that it has greatly overstated the advantages of co-location to firms and misidentified the mechanisms through which learning occurs in clusters. In particular, the theory is criticized on three points: the flexible, under-specified way that it defines its object of study; the focus on firms as an explanatory variable instead of more fundamental processes of resource accumulation; and the functionalist mode of theory that employs as an explanation. Ways to address of each of these issues are discussed. In a final section I suggest that the rather static notions of learning put forward in the knowledge-based theory of the cluster be replaced by a developmental theory of regional dynamics that focuses on both learning and structural transformation.geographic cluster, localization, relatedness, knowledge-based theory
    • 

    corecore