632 research outputs found

    Renewable power for lean desktops in media applications

    Get PDF
    An integration of solar microgeneration to supply a low-power IT desktop, using the Power over Ethernet standards IEEE 802.3af/at as a low power distribution network avoiding transformer losses from DC generation to mains power AC and back to low-voltage DC and hence maximising efficiency. The resulting design points to applications in media technology where reducing grid power consumption is critical for improving sustainability, or where there are supply constraints, and indicates new directions in how we manage and consume power for IT devices

    From self-sustainable Green Mobile Networks to enhanced interaction with the Smart Grid

    Get PDF
    Due to the staggering increase of mobile traffic, Mobile Network Operators (MNOs) are facing considerable operational cost due to power supply. Renewable Energy (RE) sources to power Base Stations (BSs) represent a promising solution to lower the energy bill, but their intermittent nature may affect the service continuity and the system self-sufficiency. Furthermore, in the new energy market dominated by the Smart Grid, new potentialities arise for MNOs in a Demand Response (DR) framework, since they can dynamically modulate the mobile network energy demand in accordance with SG requests, thus obtaining significant rewards. This work proposes various stochastic models to reliably and accurately characterize the RE production and the operation of a green mobile network, also analyzing the impact of parameter quantization on the model performance. The RE system dimensioning is investigated, trading off cost saving and feasibility constraints, and evaluating the impact of Resource on Demand (RoD) strategies, that allow to achieve more than 40% cost reduction. Finally, by exploiting RoD and WiFi offloading techniques, various energy management policies are designed to enhance the interaction of a green mobile network with the SG in a DR framework, leading to fully erase the energy bill and even gain positive revenues

    Accounting for energy cost when designing energy-efficient wireless access networks

    Get PDF
    Because of the increase of the data traffic demand, wireless access networks, through which users access telecommunication services, have expanded, in terms of size and of capability and, consequently, in terms of power consumption. Therefore, costs to buy the necessary power for the supply of base stations of those networks is becoming very high, impacting the communication cost. In this study, strategies to reduce the amount of money spent for the purchase of the energy consumed by the base stations are proposed for a network powered by solar panels, energy batteries and the power grid. First, the variability of the energy prices is exploited. It provides a cost reduction of up to 30%, when energy is bought in advance. If a part of the base stations is deactivated when the energy price is higher than a given threshold, a compromise between the energy cost and the user coverage drop is needed. In the simulated scenario, the necessary energy cost can be reduced by more than 40%, preserving the user coverage by greater than 94%. Second, the network is introduced to the energy market: it buys and sells energy from/to the traditional power grid. Finally, costs are reduced by the reduction of power consumption of the network, achieved by using microcell base stations. In the considered scenario, up to a 31% cost reduction is obtained, without the deterioration of the quality of service, but a huge Capex expenditure is required

    National Conference on ‘Renewable Energy, Smart Grid and Telecommunication-2023

    Get PDF
    Theme of the Conference: “The challenges and opportunities of integrating renewable energy into the grid” The National Conference on Renewable Energy, Smart Grid, and Telecommunication - 2023 is a platform for industry experts, researchers, and policymakers to come together and explore the latest advancements and challenges in the fields of renewable energy, smart grids, and telecommunication. Conference Highlights: In-depth discussions on renewable energy technologies and innovations. Smart grid integration for a sustainable future. The role of telecommunication in advancing renewable energy solutions. Networking opportunities with industry leaders and experts. Presentation of cutting-edge research papers and case studies. Conference topics: Renewable Energy Technologies and Innovations Smart Grid Development and Implementation Telecommunication for Energy Systems Energy Storage and Grid Balancing Policy, Regulation, and Market Dynamics Environmental and Social Impacts of Renewable Energy Energy Transition and Future Outlook Integration of renewable energy into the grid Microgrids and decentralized energy systems Grid cybersecurity and data analytics IoT and sensor technologies for energy monitoring Data management and analytics in energy sector Battery storage technologies and applicationshttps://www.interscience.in/conf_proc_volumes/1087/thumbnail.jp

    Household users cooperation to reduce cost in green mobile networks

    Get PDF
    The staggering mobile traffic growth is leading to a huge increase of operational costs for Mobile Operators (MOs) due to power supply. In a Smart Grid (SG) scenario, where Demand Response (DR) strategies are widely adopted to better balance the Demand-Supply mismatch, new opportunities arise for MOs, that can receive some monetary rewards for accomplishing the SG requests of periodically increasing or decreasing their energy consumption. This study considers a mobile network that exploits Renewable Energy (RE) to power the BSs and Resource on Demand (RoD) strategies to dynamically adapt the number of active radio resources to the varying traffic demand, in order to better react to the SG requests. On top of this, the purpose of this work is investigating the effects of the cooperation between Household Customers (HCs) engaged in the DR program and the mobile network. Based on a predefined agreement, HCs cooperate with the MO in order to increase its capability to accomplish the SG requests, receiving in return some benefits when stipulating the Internet provisioning contract with the MO. HCs can contribute to achieving the MO goals by means of two techniques. On the one hand, a fraction of the electric loads that are postponed by the HCs when the SG asks for a reduction of the energy consumption can be shifted on behalf of the mobile network, that will receive the corresponding monetary rewards (HC Trade - HCT). On the other hand, HCs can accept to handle some additional mobile traffic, that is moved to their own WiFi Access Points from the BSs, in order to reduce the energy load of the mobile network (WiFi Offloading - WO).Our results show that, although HCT alone provides limited saving in the energy bill due to the poor attitude of HCs to postpone their electric loads, up to 18% of cost saving can be achieved under full HCs cooperation when HCT is combined with WO. The effects of HCs cooperation can be further enhanced by installing larger sized RE generators, allowing to significantly reduce the energy bill up to more than 90%

    Green Mobile Networks: from self-sustainability to enhanced interaction with the Smart Grid

    Get PDF
    Nowadays, the staggering increase of the mobile traffic is leading to the deployment of denser and denser cellular access networks, hence Mobile Operators are facing huge operational cost due to power supply. Therefore, several research efforts are devoted to make mobile networks more energy efficient, with the twofold objective of reducing costs and improving sustainability. To this aim, Resource on Demand (RoD) strategies are often implemented in Mobile Networks to reduce the energy consumption, by dynamically adapting the available radio resources to the varying user demand. In addition, renewable energy sources are widely adopted to power base stations (BSs), making the mobile network more independent from the electric grid. At the same time, the Smart Grid (SG) paradigm is deeply changing the energy market, envisioning an active interaction between the grid and its customers. Demand Response (DR) policies are extensively deployed by the utility operator, with the purpose of coping with the mismatches between electricity demand and supply. The SG operator may enforce its users to shift their demand from high peak to low peak periods, by providing monetary incentives, in order to leverage the energy demand profiles. In this scenario, Mobile Operators can play a central role, since they can significantly contribute to DR objectives by dynamically modulating their demand in accordance with the SG requests, thus obtaining important electricity cost reductions. The contribution of this thesis consists in investigating various critical issues raised by the introduction of photovoltaic (PV) panels to power the BSs and to enhance the interaction with the Smart Grid, with the main objectives of making the mobile access network more independent from the grid and reducing the energy bill. When PV panels are employed to power mobile networks, simple and reliable Renewable Energy (RE) production models are needed to facilitate the system design and dimensioning, also in view of the intermittent nature of solar energy production. A simple stochastic model is hence proposed, where RE production is represented by a shape function multiplied by a random variable, characterized by a location dependent mean value and a variance. Our model results representative of RE production in locations with low intra-day weather variability. Simulations reveal also the relevance of RE production variability: for fixed mean production, higher values of the variance imply a reduced BS self-sufficiency, and larger PV panels are hence required. Moreover, properly designed models are required to accurately represent the complex operation of a mobile access network powered by renewable energy sources and equipped with some storage to harvest energy for future usage, where electric loads vary with the traffic demand, and some interaction with the Smart Grid can be envisioned. In this work various stochastic models based on discrete time Markov chains are designed, each featuring different characteristics, which depend on the various aspects of the system operation they aim to examine. We also analyze the effects of quantization of the parameters defined in these models, i.e. time, weather, and energy storage, when they are applied for power system dimensioning. Proper settings allowing to build an accurate model are derived for time granularity, discretization of the weather conditions, and energy storage quantization. Clearly, the introduction of RE to power mobile networks entails a proper system dimensioning, in order to balance the solar energy intermittent production, the traffic demand variability and the need for service continuity. This study investigates via simulation the RE system dimensioning in a mobile access network, trading off energy self-sufficiency targets and cost and feasibility constraints. In addition, to overcome the computational complexity and long computational time of simulation or optimization methods typically used to dimension the system, a simple analytical formula is derived, based on a Markovian model, for properly sizing a renewable system in a green mobile network, based on the local RE production average profile and variability, in order to guarantee the satisfaction of a target maximum value of the storage depletion probability. Furthermore, in a green mobile network scenario, Mobile Operators are encouraged to deploy strategies allowing to further increase the energy efficiency and reduce costs. This study aims at analyzing the impact of RoD strategies on energy saving and cost reduction in green mobile networks. Up to almost 40% of energy can be saved when RoD is applied under proper configuration settings, with a higher impact observed in traffic scenarios in which there is a better match between communication service demand and RE production. While a feasible PV panel and storage dimensioning can be achieved only with high costs and large powering systems, by slightly relaxing the constraint on self-sustainability it is possible to significantly reduce the size of the required PV panels, up to more than 40%, along with a reduction in the corresponding capital and operational expenditures. Finally, the introduction of RE in mobile networks contributes to give mobile operators the opportunity of becoming prominent stakeholders in the Smart Grid environment. In relation to the integration of the green network in a DR framework, this study proposes different energy management policies aiming at enhancing the interaction of the mobile network with the SG, both in terms of energy bill reduction and increased capability of providing ancillary services. Besides combining the possible presence of a local RE system with the application of RoD strategies, the proposed energy management strategies envision the implementation of WiFi offloading (WO) techniques in order to better react to the SG requests. Indeed, some of the mobile traffic can be migrated to neighbor Access Points (APs), in order to accomplish the requests of decreasing the consumption from the grid. The scenario is investigated either through a Markovian model or via simulation. Our results show that these energy management policies are highly effective in reducing the operational cost by up to more than 100% under proper setting of operational parameters, even providing positive revenues. In addition, WO alone results more effective than RoD in enhancing the capability to provide ancillary services even in absence of RE, raising the probability of accomplishing requests of increasing the grid consumption up to almost 75% in our scenario, twice the value obtained under RoD. Our results confirm that a good (in terms of energy bill reduction) energy management strategy does not operate by reducing the total grid consumption, but by timely increasing or decreasing the grid consumption when required by the SG. This work shows that the introduction of RE sources is an effective and feasible solution to power mobile networks, and it opens the way to new interesting scenarios, where Mobile Network Operators can profitably interact with the Smart Grid to obtain mutual benefits, although this definitely requires the integration of suitable energy management strategies into the communication infrastructure management

    Cyclic blackout mitigation and prevention

    Get PDF
    Severe and long-lasting power shortages plague many countries, resulting in cyclic blackouts affecting the life of millions of people. This research focuses on the design, development and evolution of a computer-controlled system for chronic cyclic blackouts mitigation based on the use of an agent-based distributed power management system integrating Supply Demand Matching (SDM) with the dynamic management of Heat, Ventilation, and Air Conditioning (HVAC) appliances. The principle is supported through interlocking different types of HVAC appliances within an adaptive cluster, the composition of which is dynamically updated according to the level of power secured from aggregating the surplus power from underutilised standby generation which is assumed to be changing throughout the day. The surplus power aggregation provides a dynamically changing flow, used to power a basic set of appliances and one HVAC per household. The proposed solution has two modes, cyclic blackout mitigation and prevention modes, selecting either one depends on the size of the power shortage. If the power shortage is severe, the system works in its cyclic blackout mitigation mode during the power OFF periods of a cyclic blackout. The system changes the composition of the HVAC cluster so that its demand added to the demand of basic household appliances matches the amount of secured supply. The system provides the best possible air conditioning/cooling service and distributes the usage right and duration of each type of HVAC appliance either equally among all houses or according to house temperature. However if the power shortage is limited and centred around the peak, the system works in its prevention mode, in such case, the system trades a minimum number of operational air conditioners (ACs) with air cooling counterparts in so doing reducing the overall demand. The solution assumes the use of a new breed of smart meters, suggested in this research, capable of dynamically rationing power provided to each household through a centrally specified power allocation for each family. This smart meter dynamically monitors each customer’s demand and ensures their allocation is never exceeded. The system implementation is evaluated utilising input power usage patterns collected through a field survey conducted in a residential quarter in Basra City, Iraq. The results of the mapping formed the foundation for a residential demand generator integrated in a custom platform (DDSM-IDEA) built as the development environment dedicated for implementing and evaluating the power management strategies. Simulation results show that the proposed solution provides an equitably distributed, comfortable quality of life level during cyclic blackout periods.Severe and long-lasting power shortages plague many countries, resulting in cyclic blackouts affecting the life of millions of people. This research focuses on the design, development and evolution of a computer-controlled system for chronic cyclic blackouts mitigation based on the use of an agent-based distributed power management system integrating Supply Demand Matching (SDM) with the dynamic management of Heat, Ventilation, and Air Conditioning (HVAC) appliances. The principle is supported through interlocking different types of HVAC appliances within an adaptive cluster, the composition of which is dynamically updated according to the level of power secured from aggregating the surplus power from underutilised standby generation which is assumed to be changing throughout the day. The surplus power aggregation provides a dynamically changing flow, used to power a basic set of appliances and one HVAC per household. The proposed solution has two modes, cyclic blackout mitigation and prevention modes, selecting either one depends on the size of the power shortage. If the power shortage is severe, the system works in its cyclic blackout mitigation mode during the power OFF periods of a cyclic blackout. The system changes the composition of the HVAC cluster so that its demand added to the demand of basic household appliances matches the amount of secured supply. The system provides the best possible air conditioning/cooling service and distributes the usage right and duration of each type of HVAC appliance either equally among all houses or according to house temperature. However if the power shortage is limited and centred around the peak, the system works in its prevention mode, in such case, the system trades a minimum number of operational air conditioners (ACs) with air cooling counterparts in so doing reducing the overall demand. The solution assumes the use of a new breed of smart meters, suggested in this research, capable of dynamically rationing power provided to each household through a centrally specified power allocation for each family. This smart meter dynamically monitors each customer’s demand and ensures their allocation is never exceeded. The system implementation is evaluated utilising input power usage patterns collected through a field survey conducted in a residential quarter in Basra City, Iraq. The results of the mapping formed the foundation for a residential demand generator integrated in a custom platform (DDSM-IDEA) built as the development environment dedicated for implementing and evaluating the power management strategies. Simulation results show that the proposed solution provides an equitably distributed, comfortable quality of life level during cyclic blackout periods

    PV Charging and Storage for Electric Vehicles

    Get PDF
    Electric vehicles are only ‘green’ as long as the source of electricity is ‘green’ as well. At the same time, renewable power production suffers from diurnal and seasonal variations, creating the need for energy storage technology. Moreover, overloading and voltage problems are expected in the distributed network due to the high penetration of distributed generation and increased power demand from the charging of electric vehicles. The energy and mobility transition hence calls for novel technological innovations in the field of sustainable electric mobility powered from renewable energy. This Special Issue focuses on recent advances in technology for PV charging and storage for electric vehicles

    Photovoltaics and Electrification in Agriculture

    Get PDF
    Integration of photovoltaics and electrification in agriculture. Works on the integration of photovoltaics in agriculture, as well as electrification and microgrids in agriculture. In addition, some works on sustainability in agriculture are added
    • 

    corecore