1,178 research outputs found

    Design, control and evaluation of a low-cost active orthosis for the gait of spinal cord injured subjects

    Get PDF
    Robotic gait training after spinal cord injury is of high priority to maximize independence and improve the living conditions of the patients. Current rehabilitation robots are expensive and heavy, and are generally found only in the clinical environment. To overcome these issues, we present the design of a low-cost, low-weight and personalized robotic orthosis for incomplete spinal cord injured subjects. The paper also presents a preliminary experimental evaluation of the assistive device on one subject with spinal cord injury that can control hip flexion to a certain extent, but lacks control of knee and ankle muscles. Results show that gait velocity, stride length and cadence of walking increased (24,11%, 7,41% and 15,56%, respectively) when wearing active orthoses compared to the case when the subject used the usual passive orthoses.Postprint (published version

    Accuracy Improvement of Neural Networks Through Self-Organizing-Maps over Training Datasets

    Get PDF
    Although it is not a novel topic, pattern recognition has become very popular and relevant in the last years. Different classification systems like neural networks, support vector machines or even complex statistical methods have been used for this purpose. Several works have used these systems to classify animal behavior, mainly in an offline way. Their main problem is usually the data pre-processing step, because the better input data are, the higher may be the accuracy of the classification system. In previous papers by the authors an embedded implementation of a neural network was deployed on a portable device that was placed on animals. This approach allows the classification to be done online and in real time. This is one of the aims of the research project MINERVA, which is focused on monitoring wildlife in Do˜nana National Park using low power devices. Many difficulties were faced when pre-processing methods quality needed to be evaluated. In this work, a novel pre-processing evaluation system based on self-organizing maps (SOM) to measure the quality of the neural network training dataset is presented. The paper is focused on a three different horse gaits classification study. Preliminary results show that a better SOM output map matches with the embedded ANN classification hit improvement.Junta de Andalucía P12-TIC-1300Ministerio de Economía y Competitividad TEC2016-77785-

    Semi-wildlife gait patterns classification using Statistical Methods and Artificial Neural Networks

    Get PDF
    Several studies have focused on classifying behavioral patterns in wildlife and captive species to monitor their activities and so to understanding the interactions of animals and control their welfare, for biological research or commercial purposes. The use of pattern recognition techniques, statistical methods and Overall Dynamic Body Acceleration (ODBA) are well known for animal behavior recognition tasks. The reconfigurability and scalability of these methods are not trivial, since a new study has to be done when changing any of the configuration parameters. In recent years, the use of Artificial Neural Networks (ANN) has increased for this purpose due to the fact that they can be easily adapted when new animals or patterns are required. In this context, a comparative study between a theoretical research is presented, where statistical and spectral analyses were performed and an embedded implementation of an ANN on a smart collar device was placed on semi-wild animals. This system is part of a project whose main aim is to monitor wildlife in real time using a wireless sensor network infrastructure. Different classifiers were tested and compared for three different horse gaits. Experimental results in a real time scenario achieved an accuracy of up to 90.7%, proving the efficiency of the embedded ANN implementation.Junta de Andalucía P12-TIC-1300Ministerio de Economía y Competitividad TEC2016-77785-

    Overcoming Bandwidth Limitations in Wireless Sensor Networks by Exploitation of Cyclic Signal Patterns: An Event-triggered Learning Approach

    Get PDF
    Wireless sensor networks are used in a wide range of applications, many of which require real-time transmission of the measurements. Bandwidth limitations result in limitations on the sampling frequency and number of sensors. This problem can be addressed by reducing the communication load via data compression and event-based communication approaches. The present paper focuses on the class of applications in which the signals exhibit unknown and potentially time-varying cyclic patterns. We review recently proposed event-triggered learning (ETL) methods that identify and exploit these cyclic patterns, we show how these methods can be applied to the nonlinear multivariable dynamics of three-dimensional orientation data, and we propose a novel approach that uses Gaussian process models. In contrast to other approaches, all three ETL methods work in real time and assure a small upper bound on the reconstruction error. The proposed methods are compared to several conventional approaches in experimental data from human subjects walking with a wearable inertial sensor network. They are found to reduce the communication load by 60–70%, which implies that two to three times more sensor nodes could be used at the same bandwidth

    Design of an Elastic Actuation System for a Gait-Assistive Active Orthosis for Incomplete Spinal Cord Injured Subjects

    Get PDF
    A spinal cord injury severely reduces the quality of life of affected people. Following the injury, limitations of the ability to move may occur due to the disruption of the motor and sensory functions of the nervous system depending on the severity of the lesion. An active stance-control knee-ankle-foot orthosis was developed and tested in earlier works to aid incomplete SCI subjects by increasing their mobility and independence. This thesis aims at the incorporation of elastic actuation into the active orthosis to utilise advantages of the compliant system regarding efficiency and human-robot interaction as well as the reproduction of the phyisological compliance of the human joints. Therefore, a model-based procedure is adapted to the design of an elastic actuation system for a gait-assisitve active orthosis. A determination of the optimal structure and parameters is undertaken via optimisation of models representing compliant actuators with increasing level of detail. The minimisation of the energy calculated from the positive amount of power or from the absolute power of the actuator generating one human-like gait cycle yields an optimal series stiffness, which is similar to the physiological stiffness of the human knee during the stance phase. Including efficiency factors for components, especially the consideration of the electric model of an electric motor yields additional information. A human-like gait cycle contains high torque and low velocities in the stance phase and lower torque combined with high velocities during the swing. Hence, the efficiency of an electric motor with a gear unit is only high in one of the phases. This yields a conceptual design of a series elastic actuator with locking of the actuator position during the stance phase. The locked position combined with the series compliance allows a reproduction of the characteristics of the human gait cycle during the stance phase. Unlocking the actuator position for the swing phase enables the selection of an optimal gear ratio to maximise the recuperable energy. To evaluate the developed concept, a laboratory specimen based on an electric motor, a harmonic drive gearbox, a torsional series spring and an electromagnetic brake is designed and appropriate components are selected. A control strategy, based on impedance control, is investigated and extended with a finite state machine to activate the locking mechanism. The control scheme and the laboratory specimen are implemented at a test bench, modelling the foot and shank as a pendulum articulated at the knee. An identification of parameters yields high and nonlinear friction as a problem of the system, which reduces the energy efficiency of the system and requires appropriate compensation. A comparison between direct and elastic actuation shows similar results for both systems at the test bench, showing that the increased complexity due to the second degree of freedom and the elastic behaviour of the actuator is treated properly. The final proof of concept requires the implementation at the active orthosis to emulate uncertainties and variations occurring during the human gait

    A practical design and implementation of a low cost platform for remote monitoring of lower limb health of amputees in the developing world

    Get PDF
    In many areas of the world accessing professional physicians ‘when needed/as needed’ might not be always possible for a variety of reasons. Therefore, in such cases a targeted e-Health solution to safeguard patient long-term health could be a meaningful approach. Today’s modern healthcare technologies, often built around electronic and computer-based equipment, require an access to a reliable electricity supply. Many healthcare technologies and products also presume access to the high speed internet is available, making them unsuitable for use in areas where there is no fixed-line internet connectivity, access is slow, unreliable and expensive, yet where the most benefit to patients may be gained. In this paper a full mobile sensor platform is presented, based around readily-purchased consumer components, to facilitate a low cost and efficient means of monitoring the health of patients with prosthetic lower limbs. This platform is designed such that it can also be operated in a standalone mode i.e. in the absence of internet connectivity, thereby making it suitable to the developing world. Also, to counter the challenge of power supply issues in e-Health monitoring, a self-contained rechargeable solution to the platform is proposed and demonstrated. The platform works with an Android mobile device, in order to allow for the capture of data from a wireless sensor unit, and to give the clinician access to results from the sensors. The results from the analysis, carried out within the platform’s Raspberry Pi Zero, are demonstrated to be of use for remote monitoring. This is specifically targeted for monitoring the tissue health of lower limb amputees. The monitoring of residual limb temperature and gait can be a useful indicator of tissue viability in lower limb amputees especially those suffering from diabetes. We describe a route wherein non-invasive monitoring of tissue health is achievable using the Gaussian process technique. This knowledge will be useful in establishing biomarkers related to a possible deterioration in a patient’s health or for assessing the impact of clinical interventions

    Personal Navigation via High-Resolution Gait-Corrected Inertial Measurement Units

    Get PDF
    In this paper, a personal micronavigation system that uses high-resolution gait-corrected inertial measurement units is presented. The goal of this paper is to develop a navigation system that uses secondary inertial variables, such as velocity, to enable long-term precise navigation in the absence of Global Positioning System (GPS) and beacon signals. In this scheme, measured zerovelocity duration from the ground reaction sensors is used to reset the accumulated integration errors from accelerometers and gyroscopes in position calculation. With the described system, an average position error of 4 m is achieved at the end of half-hour walks

    Personal Navigation via High-Resolution Gait-Corrected Inertial Measurement Units

    Get PDF
    In this paper, a personal micronavigation system that uses high-resolution gait-corrected inertial measurement units is presented. The goal of this paper is to develop a navigation system that uses secondary inertial variables, such as velocity, to enable long-term precise navigation in the absence of Global Positioning System (GPS) and beacon signals. In this scheme, measured zerovelocity duration from the ground reaction sensors is used to reset the accumulated integration errors from accelerometers and gyroscopes in position calculation. With the described system, an average position error of 4 m is achieved at the end of half-hour walks

    Pushing the limits of inertial motion sensing

    Get PDF

    Embedded neural network for real-time animal behavior classification

    Get PDF
    Recent biological studies have focused on understanding animal interactions and welfare. To help biolo- gists to obtain animals’ behavior information, resources like wireless sensor networks are needed. More- over, large amounts of obtained data have to be processed off-line in order to classify different behaviors.There are recent research projects focused on designing monitoring systems capable of measuring someanimals’ parameters in order to recognize and monitor their gaits or behaviors. However, network unre- liability and high power consumption have limited their applicability.In this work, we present an animal behavior recognition, classification and monitoring system based ona wireless sensor network and a smart collar device, provided with inertial sensors and an embeddedmulti-layer perceptron-based feed-forward neural network, to classify the different gaits or behaviorsbased on the collected information. In similar works, classification mechanisms are implemented in aserver (or base station). The main novelty of this work is the full implementation of a reconfigurableneural network embedded into the animal’s collar, which allows a real-time behavior classification andenables its local storage in SD memory. Moreover, this approach reduces the amount of data transmittedto the base station (and its periodicity), achieving a significantly improving battery life. The system hasbeen simulated and tested in a real scenario for three different horse gaits, using different heuristics andsensors to improve the accuracy of behavior recognition, achieving a maximum of 81%.Junta de Andalucía P12-TIC-130
    corecore