158 research outputs found

    Probabilistic Approach for Road-Users Detection

    Get PDF
    Object detection in autonomous driving applications implies that the detection and tracking of semantic objects are commonly native to urban driving environments, as pedestrians and vehicles. One of the major challenges in state-of-the-art deep-learning based object detection is false positive which occurrences with overconfident scores. This is highly undesirable in autonomous driving and other critical robotic-perception domains because of safety concerns. This paper proposes an approach to alleviate the problem of overconfident predictions by introducing a novel probabilistic layer to deep object detection networks in testing. The suggested approach avoids the traditional Sigmoid or Softmax prediction layer which often produces overconfident predictions. It is demonstrated that the proposed technique reduces overconfidence in the false positives without degrading the performance on the true positives. The approach is validated on the 2D-KITTI objection detection through the YOLOV4 and SECOND (Lidar-based detector). The proposed approach enables enabling interpretable probabilistic predictions without the requirement of re-training the network and therefore is very practical.Comment: This work has been submitted to IEEE T-ITS for review and possible publicatio

    A Metacognitive Approach to Out-of-Distribution Detection for Segmentation

    Full text link
    Despite outstanding semantic scene segmentation in closed-worlds, deep neural networks segment novel instances poorly, which is required for autonomous agents acting in an open world. To improve out-of-distribution (OOD) detection for segmentation, we introduce a metacognitive approach in the form of a lightweight module that leverages entropy measures, segmentation predictions, and spatial context to characterize the segmentation model's uncertainty and detect pixel-wise OOD data in real-time. Additionally, our approach incorporates a novel method of generating synthetic OOD data in context with in-distribution data, which we use to fine-tune existing segmentation models with maximum entropy training. This further improves the metacognitive module's performance without requiring access to OOD data while enabling compatibility with established pre-trained models. Our resulting approach can reliably detect OOD instances in a scene, as shown by state-of-the-art performance on OOD detection for semantic segmentation benchmarks

    Text Analysis of Airline Tweets

    Get PDF
    By acting as a succinct summary, keywords and key phrases can be a useful tool for swiftly assessing enormous amounts of textual material. A keyword is defined as a word that briefly and accurately characterises the subject, or an aspect of the subject, presented in a text, according to the International Encyclopaedia of Information and Library Science (Bolger et al., 1989) (Feather et al., 1996). People are more likely to complain when they are anxious, according to research (Bolger et al., 1989)(Meier et al., 2013), and moods are affected by time (Ryan et al., 2010). Due to this study, airlines will have a tool to calibrate and judge the positivity/negativity of tweets based on the day of the week, which is a topic that has yet to be researched. We want to do text and sentiment analysis on extracted airline travel tweets, taking into account when the tweet was ‘tweeted’ and if it had a good or negative impact

    Angular Gap: Reducing the Uncertainty of Image Difficulty through Model Calibration

    Get PDF
    Curriculum learning needs example difficulty to proceed from easy to hard. However, the credibility of image difficulty is rarely investigated, which can seriously affect the effectiveness of curricula. In this work, we propose Angular Gap, a measure of difficulty based on the difference in angular distance between feature embeddings and class-weight embeddings built by hyperspherical learning. To ascertain difficulty estimation, we introduce class-wise model calibration, as a post-training technique, to the learnt hyperbolic space. This bridges the gap between probabilistic model calibration and angular distance estimation of hyperspherical learning. We show the superiority of our calibrated Angular Gap over recent difficulty metrics on CIFAR10-H and ImageNetV2. We further propose a curriculum based on Angular Gap for unsupervised domain adaptation that can translate from learning easy samples to mining hard samples. We combine this curriculum with a state-of-the-art self-training method, Cycle Self Training (CST). The proposed Curricular CST learns robust representations and outperforms recent baselines on Office31 and VisDA 2017

    A Survey of the Application of Machine Learning in Decision Support Systems

    Get PDF
    Machine learning is a useful technology for decision support systems and assumes greater importance in research and practice. Whilst much of the work focuses technical implementations and the adaption of machine learning algorithms to application domains, the factors of machine learning design affecting the usefulness of decision support are still understudied. To enhance the understanding of machine learning and its use in decision support systems, we report the results of our content analysis of design-oriented research published between 1994 and 2013 in major Information Systems outlets. The findings suggest that the usefulness of machine learning for supporting decision-makers is dependent on the task, the phase of decision-making, and the applied technologies. We also report about the advantages and limitations of prior research, the applied evaluation methods and implications for future decision support research. Our findings suggest that future decision support research should shed more light on organizational and people-related evaluation criteria
    • …
    corecore