6,856 research outputs found

    Auto-Sizing Neural Networks: With Applications to n-gram Language Models

    Full text link
    Neural networks have been shown to improve performance across a range of natural-language tasks. However, designing and training them can be complicated. Frequently, researchers resort to repeated experimentation to pick optimal settings. In this paper, we address the issue of choosing the correct number of units in hidden layers. We introduce a method for automatically adjusting network size by pruning out hidden units through ℓ∞,1\ell_{\infty,1} and ℓ2,1\ell_{2,1} regularization. We apply this method to language modeling and demonstrate its ability to correctly choose the number of hidden units while maintaining perplexity. We also include these models in a machine translation decoder and show that these smaller neural models maintain the significant improvements of their unpruned versions.Comment: EMNLP 201

    Compact Personalized Models for Neural Machine Translation

    Full text link
    We propose and compare methods for gradient-based domain adaptation of self-attentive neural machine translation models. We demonstrate that a large proportion of model parameters can be frozen during adaptation with minimal or no reduction in translation quality by encouraging structured sparsity in the set of offset tensors during learning via group lasso regularization. We evaluate this technique for both batch and incremental adaptation across multiple data sets and language pairs. Our system architecture - combining a state-of-the-art self-attentive model with compact domain adaptation - provides high quality personalized machine translation that is both space and time efficient.Comment: Published at the 2018 Conference on Empirical Methods in Natural Language Processin
    • …
    corecore