13,464 research outputs found

    Focal Spot, Spring 2001

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1087/thumbnail.jp

    Multi-Atlas Segmentation using Partially Annotated Data: Methods and Annotation Strategies

    Get PDF
    Multi-atlas segmentation is a widely used tool in medical image analysis, providing robust and accurate results by learning from annotated atlas datasets. However, the availability of fully annotated atlas images for training is limited due to the time required for the labelling task. Segmentation methods requiring only a proportion of each atlas image to be labelled could therefore reduce the workload on expert raters tasked with annotating atlas images. To address this issue, we first re-examine the labelling problem common in many existing approaches and formulate its solution in terms of a Markov Random Field energy minimisation problem on a graph connecting atlases and the target image. This provides a unifying framework for multi-atlas segmentation. We then show how modifications in the graph configuration of the proposed framework enable the use of partially annotated atlas images and investigate different partial annotation strategies. The proposed method was evaluated on two Magnetic Resonance Imaging (MRI) datasets for hippocampal and cardiac segmentation. Experiments were performed aimed at (1) recreating existing segmentation techniques with the proposed framework and (2) demonstrating the potential of employing sparsely annotated atlas data for multi-atlas segmentation

    Focal Spot, Spring 2004

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1096/thumbnail.jp

    The RSNA QIBA Profile for Amyloid PET as an Imaging Biomarker for Cerebral Amyloid Quantification

    Get PDF
    A standardized approach to acquiring amyloid PET images increases their value as disease and drug response biomarkers. Most 18F PET amyloid brain scans often are assessed only visually (per regulatory labels), with a binary decision indicating the presence or absence of Alzheimer disease amyloid pathology. Minimizing technical variance allows precise, quantitative SUV ratios (SUVRs) for early detection of b-amyloid plaques and allows the effectiveness of antiamyloid treatments to be assessed with serial studies. Methods: The Quantitative Imaging Biomarkers Alliance amyloid PET biomarker committee developed and validated a profile to characterize and reduce the variability of SUVRs, increasing statistical power for these assessments. Results: On achieving conformance, sites can justify a claim that brain amyloid burden reflected by the SUVR is measurable to a within-subject coefficient of variation of no more than 1.94% when the same radiopharmaceutical, scanner, acquisition, and analysis protocols are used. Conclusion: This overview explains the claim, requirements, barriers, and potential future developments of the profile to achieve precision in clinical and research amyloid PET imaging.</p

    Focal Spot, Fall/Winter 1994

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1068/thumbnail.jp

    Image Registration for Quantitative Parametric Response Mapping of Cancer Treatment Response

    Get PDF
    AbstractImaging biomarkers capable of early quantification of tumor response to therapy would provide an opportunity to individualize patient care. Image registration of longitudinal scans provides a method of detecting treatment-associated changes within heterogeneous tumors by monitoring alterations in the quantitative value of individual voxels over time, which is unattainable by traditional volumetric-based histogram methods. The concepts involved in the use of image registration for tracking and quantifying breast cancer treatment response using parametric response mapping (PRM), a voxel-based analysis of diffusion-weighted magnetic resonance imaging (DW-MRI) scans, are presented. Application of PRM to breast tumor response detection is described, wherein robust registration solutions for tracking small changes in water diffusivity in breast tumors during therapy are required. Methodologies that employ simulations are presented for measuring expected statistical accuracy of PRM for response assessment. Test-retest clinical scans are used to yield estimates of system noise to indicate significant changes in voxel-based changes in water diffusivity. Overall, registration-based PRM image analysis provides significant opportunities for voxel-based image analysis to provide the required accuracy for early assessment of response to treatment in breast cancer patients receiving neoadjuvant chemotherapy

    Multimodal breast imaging: Registration, visualization, and image synthesis

    Get PDF
    The benefit of registration and fusion of functional images with anatomical images is well appreciated in the advent of combined positron emission tomography and x-ray computed tomography scanners (PET/CT). This is especially true in breast cancer imaging, where modalities such as high-resolution and dynamic contrast-enhanced magnetic resonance imaging (MRI) and F-18-FDG positron emission tomography (PET) have steadily gained acceptance in addition to x-ray mammography, the primary detection tool. The increased interest in combined PET/MRI images has facilitated the demand for appropriate registration and fusion algorithms. A new approach to MRI-to-PET non-rigid breast image registration was developed and evaluated based on the location of a small number of fiducial skin markers (FSMs) visible in both modalities. The observed FSM displacement vectors between MRI and PET, distributed piecewise linearly over the breast volume, produce a deformed Finite-Element mesh that reasonably approximates non-rigid deformation of the breast tissue between the MRI and PET scans. The method does not require a biomechanical breast tissue model, and is robust and fast. The method was evaluated both qualitatively and quantitatively on patients and a deformable breast phantom. The procedure yields quality images with average target registration error (TRE) below 4 mm. The importance of appropriately jointly displaying (i.e. fusing) the registered images has often been neglected and underestimated. A combined MRI/PET image has the benefits of directly showing the spatial relationships between the two modalities, increasing the sensitivity, specificity, and accuracy of diagnosis. Additional information on morphology and on dynamic behavior of the suspicious lesion can be provided, allowing more accurate lesion localization including mapping of hyper- and hypo-metabolic regions as well as better lesion-boundary definition, improving accuracy when grading the breast cancer and assessing the need for biopsy. Eight promising fusion-for-visualization techniques were evaluated by radiologists from University Hospital, in Syracuse, NY. Preliminary results indicate that the radiologists were better able to perform a series of tasks when reading the fused PET/MRI data sets using color tables generated by a newly developed genetic algorithm, as compared to other commonly used schemes. The lack of a known ground truth hinders the development and evaluation of new algorithms for tasks such as registration and classification. A preliminary mesh-based breast phantom containing 12 distinct tissue classes along with tissue properties necessary for the simulation of dynamic positron emission tomography scans was created. The phantom contains multiple components which can be separately manipulated, utilizing geometric transformations, to represent populations or a single individual being imaged in multiple positions. This phantom will support future multimodal breast imaging work
    • …
    corecore