657 research outputs found

    Sum Rate Maximizing Multigroup Multicast Beamforming under Per-antenna Power Constraints

    Get PDF
    A multi-antenna transmitter that conveys independent sets of common data to distinct groups of users is herein considered, a model known as physical layer multicasting to multiple co-channel groups. In the recently proposed context of per-antenna power constrained multigroup multicasting, the present work focuses on a novel system design that aims at maximizing the total achievable throughput. Towards increasing the system sum rate, the available power resources need to be allocated to well conditioned groups of users. A detailed solution to tackle the elaborate sum rate maximization multigroup multicast problem under per-antenna power constraints is therefore derived. Numerical results are presented to quantify the gains of the proposed algorithm over heuristic solutions. Besides Rayleigh faded channels, the solution is also applied to uniform linear array transmitters operating in the far field, where line-ofsight conditions are realized. In this setting, a sensitivity analysis with respect to the angular separation of co-group users is included. Finally, a simple scenario providing important intuitions for the sum rate maximizing multigroup multicast solutions is elaborated.Comment: Submitted to IEEE GlobeCom 2014, Austin, TX. arXiv admin note: substantial text overlap with arXiv:1406.7699, arXiv:1406.755

    Coordinated Multicasting with Opportunistic User Selection in Multicell Wireless Systems

    Full text link
    Physical layer multicasting with opportunistic user selection (OUS) is examined for multicell multi-antenna wireless systems. By adopting a two-layer encoding scheme, a rate-adaptive channel code is applied in each fading block to enable successful decoding by a chosen subset of users (which varies over different blocks) and an application layer erasure code is employed across multiple blocks to ensure that every user is able to recover the message after decoding successfully in a sufficient number of blocks. The transmit signal and code-rate in each block determine opportunistically the subset of users that are able to successfully decode and can be chosen to maximize the long-term multicast efficiency. The employment of OUS not only helps avoid rate-limitations caused by the user with the worst channel, but also helps coordinate interference among different cells and multicast groups. In this work, efficient algorithms are proposed for the design of the transmit covariance matrices, the physical layer code-rates, and the target user subsets in each block. In the single group scenario, the system parameters are determined by maximizing the group-rate, defined as the physical layer code-rate times the fraction of users that can successfully decode in each block. In the multi-group scenario, the system parameters are determined by considering a group-rate balancing optimization problem, which is solved by a successive convex approximation (SCA) approach. To further reduce the feedback overhead, we also consider the case where only part of the users feed back their channel vectors in each block and propose a design based on the balancing of the expected group-rates. In addition to SCA, a sample average approximation technique is also introduced to handle the probabilistic terms arising in this problem. The effectiveness of the proposed schemes is demonstrated by computer simulations.Comment: Accepted by IEEE Transactions on Signal Processin

    Multicast Multigroup Precoding and User Scheduling for Frame-Based Satellite Communications

    Get PDF
    The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.Comment: Accepted for publication to the IEEE Transactions on Wireless Communications, 201

    Rank-Two Beamforming and Power Allocation in Multicasting Relay Networks

    Full text link
    In this paper, we propose a novel single-group multicasting relay beamforming scheme. We assume a source that transmits common messages via multiple amplify-and-forward relays to multiple destinations. To increase the number of degrees of freedom in the beamforming design, the relays process two received signals jointly and transmit the Alamouti space-time block code over two different beams. Furthermore, in contrast to the existing relay multicasting scheme of the literature, we take into account the direct links from the source to the destinations. We aim to maximize the lowest received quality-of-service by choosing the proper relay weights and the ideal distribution of the power resources in the network. To solve the corresponding optimization problem, we propose an iterative algorithm which solves sequences of convex approximations of the original non-convex optimization problem. Simulation results demonstrate significant performance improvements of the proposed methods as compared with the existing relay multicasting scheme of the literature and an algorithm based on the popular semidefinite relaxation technique
    • …
    corecore