41,771 research outputs found

    Testing the Accuracy and Stability of Spectral Methods in Numerical Relativity

    Get PDF
    The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the KST representation of the Einstein evolution equations. The basic "Mexico City Tests" widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test. All of these tests are found to be stable, except for simulations of high amplitude gauge waves with nontrivial shift.Comment: Final version, as published in Phys. Rev. D; 13 pages, 16 figure

    Consistent Second-Order Conic Integer Programming for Learning Bayesian Networks

    Full text link
    Bayesian Networks (BNs) represent conditional probability relations among a set of random variables (nodes) in the form of a directed acyclic graph (DAG), and have found diverse applications in knowledge discovery. We study the problem of learning the sparse DAG structure of a BN from continuous observational data. The central problem can be modeled as a mixed-integer program with an objective function composed of a convex quadratic loss function and a regularization penalty subject to linear constraints. The optimal solution to this mathematical program is known to have desirable statistical properties under certain conditions. However, the state-of-the-art optimization solvers are not able to obtain provably optimal solutions to the existing mathematical formulations for medium-size problems within reasonable computational times. To address this difficulty, we tackle the problem from both computational and statistical perspectives. On the one hand, we propose a concrete early stopping criterion to terminate the branch-and-bound process in order to obtain a near-optimal solution to the mixed-integer program, and establish the consistency of this approximate solution. On the other hand, we improve the existing formulations by replacing the linear "big-MM" constraints that represent the relationship between the continuous and binary indicator variables with second-order conic constraints. Our numerical results demonstrate the effectiveness of the proposed approaches

    Quantization of anomaly coefficients in 6D N=(1,0)\mathcal{N}=(1,0) supergravity

    Full text link
    We obtain new constraints on the anomaly coefficients of 6D N=(1,0)\mathcal{N}=(1,0) supergravity theories using local and global anomaly cancellation conditions. We show how these constraints can be strengthened if we assume that the theory is well-defined on any spin space-time with an arbitrary gauge bundle. We distinguish the constraints depending on the gauge algebra only from those depending on the global structure of the gauge group. Our main constraint states that the coefficients of the anomaly polynomial for the gauge group GG should be an element of 2H4(BG;Z)⊗ΛS2 H^4(BG;\mathbb{Z}) \otimes \Lambda_S where ΛS\Lambda_S is the unimodular string charge lattice. We show that the constraints in their strongest form are realized in F-theory compactifications. In the process, we identify the cocharacter lattice, which determines the global structure of the gauge group, within the homology lattice of the compactification manifold.Comment: 42 pages. v3: Some clarifications, typos correcte

    Integer-Forcing Source Coding

    Full text link
    Integer-Forcing (IF) is a new framework, based on compute-and-forward, for decoding multiple integer linear combinations from the output of a Gaussian multiple-input multiple-output channel. This work applies the IF approach to arrive at a new low-complexity scheme, IF source coding, for distributed lossy compression of correlated Gaussian sources under a minimum mean squared error distortion measure. All encoders use the same nested lattice codebook. Each encoder quantizes its observation using the fine lattice as a quantizer and reduces the result modulo the coarse lattice, which plays the role of binning. Rather than directly recovering the individual quantized signals, the decoder first recovers a full-rank set of judiciously chosen integer linear combinations of the quantized signals, and then inverts it. In general, the linear combinations have smaller average powers than the original signals. This allows to increase the density of the coarse lattice, which in turn translates to smaller compression rates. We also propose and analyze a one-shot version of IF source coding, that is simple enough to potentially lead to a new design principle for analog-to-digital converters that can exploit spatial correlations between the sampled signals.Comment: Submitted to IEEE Transactions on Information Theor

    Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models

    Get PDF
    We make use of O(2r+1) spinning particle models to construct linearized higher-spin curvatures in (A)dS spaces for fields of arbitrary half-integer spin propagating in a space of arbitrary (even) dimension: the field potentials, whose curvatures are computed with the present models, are spinor-tensors of mixed symmetry corresponding to Young tableaux with D/2 - 1 rows and r columns, thus reducing to totally symmetric spinor-tensors in four dimensions. The paper generalizes similar results obtained in the context of integer spins in (A)dS.Comment: 1+18 pages; minor changes in the notation, references updated. Published versio

    A One-Parameter Family of Hamiltonian Structures for the KP Hierarchy and a Continuous Deformation of the Nonlinear \W_{\rm KP} Algebra

    Full text link
    The KP hierarchy is hamiltonian relative to a one-parameter family of Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting \W-algebra is a one-parameter deformation of \W_{\rm KP} admitting a central extension for generic values of the parameter, reducing naturally to \W_n for special values of the parameter, and contracting to the centrally extended \W_{1+\infty}, \W_\infty and further truncations. In the classical limit, all algebras in the one-parameter family are equivalent and isomorphic to \w_{\rm KP}. The reduction induced by setting the spin-one field to zero yields a one-parameter deformation of \widehat{\W}_\infty which contracts to a new nonlinear algebra of the \W_\infty-type.Comment: 31 pages, compressed uuencoded .dvi file, BONN-HE-92/20, US-FT-7/92, KUL-TF-92/20. [version just replaced was truncated by some mailer

    Fluxes in F-theory Compactifications on Genus-One Fibrations

    Get PDF
    We initiate the construction of gauge fluxes in F-theory compactifications on genus-one fibrations which only have a multi-section as opposed to a section. F-theory on such spaces gives rise to discrete gauge symmetries in the effective action. We generalize the transversality conditions on gauge fluxes known for elliptic fibrations by taking into account the properties of the available multi-section. We test these general conditions by constructing all vertical gauge fluxes in a bisection model with gauge group SU(5) x Z2. The non-abelian anomalies are shown to vanish. These flux solutions are dynamically related to fluxes on a fibration with gauge group SU(5) x U(1) by a conifold transition. Considerations of flux quantization reveal an arithmetic constraint on certain intersection numbers on the base which must necessarily be satisfied in a smooth geometry. Combined with the proposed transversality conditions on the fluxes these conditions are shown to imply cancellation of the discrete Z2 gauge anomalies as required by general consistency considerations.Comment: 30 pages; v2: typos correcte
    • …
    corecore