2,270 research outputs found

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio

    Wireless Sensor Network Clustering with Machine Learning

    Get PDF
    Wireless sensor networks (WSNs) are useful in situations where a low-cost network needs to be set up quickly and no fixed network infrastructure exists. Typical applications are for military exercises and emergency rescue operations. Due to the nature of a wireless network, there is no fixed routing or intrusion detection and these tasks must be done by the individual network nodes. The nodes of a WSN are mobile devices and rely on battery power to function. Due the limited power resources available to the devices and the tasks each node must perform, methods to decrease the overall power consumption of WSN nodes are an active research area. This research investigated using genetic algorithms and graph algorithms to determine a clustering arrangement of wireless nodes that would reduce WSN power consumption and thereby prolong the lifetime of the network. The WSN nodes were partitioned into clusters and a node elected from each cluster to act as a cluster head. The cluster head managed routing tasks for the cluster, thereby reducing the overall WSN power usage. The clustering configuration was determined via genetic algorithm and graph algorithms. The fitness function for the genetic algorithm was based on the energy used by the nodes. It was found that the genetic algorithm was able to cluster the nodes in a near-optimal configuration for energy efficiency. Chromosome repair was also developed and implemented. Two different repair methods were found to be successful in producing near-optimal solutions and reducing the time to reach the solution versus a standard genetic algorithm. It was also found the repair methods were able to implement gateway nodes and energy balance to further reduce network energy consumption

    Implementation of optimal solution for network lifetime and energy consumption metrics using improved energy efficient LEACH protocol in MANET

    Get PDF
    In current scenarios MANET mainly focus on low power battery operated devices. Moreover in a MANET transmission of large data consumes more energy that affects the performance of network, energy consumption, throughput, end to end delay, and packet overhead. The sum of these parameter metrics measure must be taken into account to increase the life-time and network energy efficiency. The main constraint in WSN is due to the restricted power in a node, which cannot be substituted. The node senses the data and it is moved towards the sink. This action of data movement needs to be efficient and the usage of battery in the sensor node requires to be efficiently employed to improve the network lifetime. The development of the energy efficient algorithms is of primary concern in the research arena of MANET. In any network, most of the routing protocols are focused directly to collect and bifurcate the large data for long distance communication. The prime goal of this research focused to identifies and survey more suitable routing protocol for MANET. That consumed less energy and increase life time of network. In this paper the author made on attempt on improved energy efficient LEACH protocol for MANET to reduce the energy dissipation that to life time of the network during the data transmission between source nodes and destination nodes

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    An Enhanced Cluster-Based Routing Model for Energy-Efficient Wireless Sensor Networks

    Get PDF
    Energy efficiency is a crucial consideration in wireless sensor networks since the sensor nodes are resource-constrained, and this limited resource, if not optimally utilized, may disrupt the entire network's operations. The network must ensure that the limited energy resources are used as effectively as possible to allow for longer-term operation. The study designed and simulated an improved Genetic Algorithm-Based Energy-Efficient Routing (GABEER) algorithm to combat the issue of energy depletion in wireless sensor networks. The GABEER algorithm was designed using the Free Space Path Loss Model to determine each node's location in the sensor field according to its proximity to the base station (sink) and the First-Order Radio Energy Model to measure the energy depletion of each node to obtain the residual energy. The GABEER algorithm was coded in the C++ programming language, and the wireless sensor network was simulated using Network Simulator 3 (NS-3). The outcomes of the simulation revealed that the GABEER algorithm has the capability of increasing the performance of sensor network operations with respect to lifetime and stability period

    Trust-based secure clustering in WSN-based intelligent transportation systems

    Get PDF
    Increasing the number of vehicles on roads leads to congestion and safety problems. Wireless Sensor Network (WSN) is a promising technology providing Intelligent Transportation Systems (ITS) to address these problems. Usually, WSN-based applications, including ITS ones, incur high communication overhead to support efficient connectivity and communication activities. In the ITS environment, clustering would help in addressing the high communication overhead problem. In this paper, we introduce a bio-inspired and trust-based cluster head selection approach for WSN adopted in ITS applications. A trust model is designed and used to compute a trust level for each node and the Bat Optimization Algorithm (BOA) is used to select the cluster heads based on three parameters: residual energy, trust value and the number of neighbors. The simulation results showed that our proposed model is energy efficient (i.e., its power consumption is more efficient than many well-known clustering algorithm such as LEACH, SEP, and DEEC under homogeneous and heterogeneous networks). In addition, the results demonstrated that our proposed model achieved longer network lifetime, i.e., nodes are kept alive longer than what LEACH, SEP and DEEC can achieve. Moreover, the the proposed model showed that the average trust value of selected Cluster Head (CH) is high under different percentage (30% and 50%) of malicious nodes
    • …
    corecore