4,606 research outputs found

    Antennas and Propagation of Implanted RFIDs for Pervasive Healthcare Applications

    Get PDF
    © 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/JPROC.2010.205101

    Accessing Antecedents and Outcomes of RFID Implementation in Health Care

    Get PDF
    This research first conceptualizes, develops, and validates four constructs for studying RFID in health care, including Drivers (Internal and External), Implementation Level (Clinical Focus and Administrative Focus), Barriers (Cost Issues, Lack of Understanding, Technical Issues, and Privacy and Security Concerns), and Benefits (Patient Care, Productivity, Security and Safety, Asset Management, and Communication). Data for the study were collected from 88 health care organizations and the measurement scales were validated using structural equation modeling. Second, a framework is developed to discuss the causal relationships among the above mentioned constructs. It is found that Internal Drivers are positively related to Implementation Level, which in turn is positively related to Benefits and Performance. In addition, Barriers are found to be positively related to Implementation Level, which is in contrast to the originally proposed negative relationship. The research also compares perception differences regarding RFID implementation among the non-implementers, future implementers, and current implementers of RFID. It is found that both future implementers and current implementers consider RFID barriers to be lower and benefits to be higher compared to the non-implementers. This paper ends with our research implications, limitations and future research

    Reviewing the Drivers and Challenges in RFID Implementation in the Pharmaceutical Supply Chain

    Get PDF
    Counterfeiting is a global phenomenon that poses a serious financial threat to the pharmaceutical industry and more importantly jeopardizes public safety and security. Different measures, including new laws and regulations, have been put in place to mitigate the threat and tighten control in the pharmaceuticals supply chain. However, it appears that the most promising countermeasure is track-and-trace technology such as electronic-pedigree (E-pedigree) with Radio Frequency Identification (RFID) technology. In this study we present a framework exploring the antecedents and consequences of RFID applications in the pharmaceutical supply chain. The framework proposes that counterfeiting and E-pedigree regulation will drive the implementation of RFID in the pharmaceutical supply chain, which in turn provides strategic and operational benefits that enable competitive advantage. Meanwhile, the implementation of RFID requires overcoming many operational, technical and financial challenges. The framework provides a springboard that future study can explore using empirical data

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    IT-Supported Management of Mass Casualty Incidents: The e-Triage Project

    Get PDF
    Voice, analogue mobile radio, and paper have been successfully used for decades for coordination of emergencies and disasters, but although being simple and robust this approach cannot keep pace with today’s requirements any more. Emerging and established digital communication standards open the door to new applications and services, but the expected benefit needs to be carefully evaluated against robustness, interoperability, and user-friendliness. This paper describes a framework for IT-supported management of mass casualty incidents, which is currently under implementation and study. The four pillars of the concept are handheld devices for use both in daily rescue operations and in disasters, autonomous satellite-based communication infrastructure, a distributed database concept for maximal availability, and psychological acceptance research

    The Next-Generation of Processes in Supply Chain: Impact on the Health Care Industry

    Get PDF
    In recent years, there has been a growing focus on the next-generation of supply chain processes in the health care sector, with a great emphasis on the use of data analytics, automation, radio-frequency identification (RFID) and blockchain technology. Data analytics can be used to identify patterns and optimize decision-making in the operational process flow. Automation can be used to streamline processes, reduce errors and improve efficiency. RFID can be used to track the movement of products through all channels of distribution, providing real-time visibility and traceability. Blockchain can be used to create a secure and immutable record of transactions, providing transparency and trust throughout the supply chain. This article will discuss the adoption of these technologies and techniques, and how they have the potential to revolutionize the health care supply chain, making it more efficient, transparent and secure. It will describe the potential of its positive impact on patient care, by ensuring that patients have access to the right products at the right time, and by reducing the risk of counterfeit and contaminated products. Health care organizations need to invest in these technologies, develop newer business models and focus on transforming their operating processes in order to remain competitive in this rapidly changing landscape. It will also provide an overview of the opportunities associated with the adoption of these technologies. Alongside, it will also discuss the implications of these trends for health care organizations and distribution networks.&nbsp

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99
    corecore