862 research outputs found

    Vertical Optimizations of Convolutional Neural Networks for Embedded Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    On-Chip Learning and Inference Acceleration of Sparse Representations

    Get PDF
    abstract: The past decade has seen a tremendous surge in running machine learning (ML) functions on mobile devices, from mere novelty applications to now indispensable features for the next generation of devices. While the mobile platform capabilities range widely, long battery life and reliability are common design concerns that are crucial to remain competitive. Consequently, state-of-the-art mobile platforms have become highly heterogeneous by combining a powerful CPUs with GPUs to accelerate the computation of deep neural networks (DNNs), which are the most common structures to perform ML operations. But traditional von Neumann architectures are not optimized for the high memory bandwidth and massively parallel computation demands required by DNNs. Hence, propelling research into non-von Neumann architectures to support the demands of DNNs. The re-imagining of computer architectures to perform efficient DNN computations requires focusing on the prohibitive demands presented by DNNs and alleviating them. The two central challenges for efficient computation are (1) large memory storage and movement due to weights of the DNN and (2) massively parallel multiplications to compute the DNN output. Introducing sparsity into the DNNs, where certain percentage of either the weights or the outputs of the DNN are zero, greatly helps with both challenges. This along with algorithm-hardware co-design to compress the DNNs is demonstrated to provide efficient solutions to greatly reduce the power consumption of hardware that compute DNNs. Additionally, exploring emerging technologies such as non-volatile memories and 3-D stacking of silicon in conjunction with algorithm-hardware co-design architectures will pave the way for the next generation of mobile devices. Towards the objectives stated above, our specific contributions include (a) an architecture based on resistive crosspoint array that can update all values stored and compute matrix vector multiplication in parallel within a single cycle, (b) a framework of training DNNs with a block-wise sparsity to drastically reduce memory storage and total number of computations required to compute the output of DNNs, (c) the exploration of hardware implementations of sparse DNNs and architectural guidelines to reduce power consumption for the implementations in monolithic 3D integrated circuits, and (d) a prototype chip in 65nm CMOS accelerator for long-short term memory networks trained with the proposed block-wise sparsity scheme.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Fiber-bundle-basis sparse reconstruction for high resolution wide-field microendoscopy

    Get PDF
    In order to observe deep regions of the brain, we propose the use of a fiber bundle for microendoscopy. Fiber bundles allow for the excitation and collection of fluorescence as well as wide field imaging while remaining largely impervious to image distortions brought on by bending. Furthermore, their thin diameter, from 200–500 µm, means their impact on living tissue, though not absent, is minimal. Although wide field imaging with a bundle allows for a high temporal resolution since no scanning is involved, the largest criticism of bundle imaging is the drastically lowered spatial resolution. In this paper, we make use of sparsity in the object being imaged to up sample the low resolution images from the fiber bundle with compressive sensing. We take each image in a single shot by using a measurement basis dictated by the quasi-crystalline arrangement of the bundle’s cores. We find that this technique allows us to increase the resolution of a typical image taken through a fiber bundle

    Efficient machine learning: models and accelerations

    Get PDF
    One of the key enablers of the recent unprecedented success of machine learning is the adoption of very large models. Modern machine learning models typically consist of multiple cascaded layers such as deep neural networks, and at least millions to hundreds of millions of parameters (i.e., weights) for the entire model. The larger-scale model tend to enable the extraction of more complex high-level features, and therefore, lead to a significant improvement of the overall accuracy. On the other side, the layered deep structure and large model sizes also demand to increase computational capability and memory requirements. In order to achieve higher scalability, performance, and energy efficiency for deep learning systems, two orthogonal research and development trends have attracted enormous interests. The first trend is the acceleration while the second is the model compression. The underlying goal of these two trends is the high quality of the models to provides accurate predictions. In this thesis, we address these two problems and utilize different computing paradigms to solve real-life deep learning problems. To explore in these two domains, this thesis first presents the cogent confabulation network for sentence completion problem. We use Chinese language as a case study to describe our exploration of the cogent confabulation based text recognition models. The exploration and optimization of the cogent confabulation based models have been conducted through various comparisons. The optimized network offered a better accuracy performance for the sentence completion. To accelerate the sentence completion problem in a multi-processing system, we propose a parallel framework for the confabulation recall algorithm. The parallel implementation reduce runtime, improve the recall accuracy by breaking the fixed evaluation order and introducing more generalization, and maintain a balanced progress in status update among all neurons. A lexicon scheduling algorithm is presented to further improve the model performance. As deep neural networks have been proven effective to solve many real-life applications, and they are deployed on low-power devices, we then investigated the acceleration for the neural network inference using a hardware-friendly computing paradigm, stochastic computing. It is an approximate computing paradigm which requires small hardware footprint and achieves high energy efficiency. Applying this stochastic computing to deep convolutional neural networks, we design the functional hardware blocks and optimize them jointly to minimize the accuracy loss due to the approximation. The synthesis results show that the proposed design achieves the remarkable low hardware cost and power/energy consumption. Modern neural networks usually imply a huge amount of parameters which cannot be fit into embedded devices. Compression of the deep learning models together with acceleration attracts our attention. We introduce the structured matrices based neural network to address this problem. Circulant matrix is one of the structured matrices, where a matrix can be represented using a single vector, so that the matrix is compressed. We further investigate a more flexible structure based on circulant matrix, called block-circulant matrix. It partitions a matrix into several smaller blocks and makes each submatrix is circulant. The compression ratio is controllable. With the help of Fourier Transform based equivalent computation, the inference of the deep neural network can be accelerated energy efficiently on the FPGAs. We also offer the optimization for the training algorithm for block circulant matrices based neural networks to obtain a high accuracy after compression

    Clearing the Clouds: Extracting 3D information from amongst the noise

    Get PDF
    Advancements permitting the rapid extraction of 3D point clouds from a variety of imaging modalities across the global landscape have provided a vast collection of high fidelity digital surface models. This has created a situation with unprecedented overabundance of 3D observations which greatly outstrips our current capacity to manage and infer actionable information. While years of research have removed some of the manual analysis burden for many tasks, human analysis is still a cornerstone of 3D scene exploitation. This is especially true for complex tasks which necessitate comprehension of scale, texture and contextual learning. In order to ameliorate the interpretation burden and enable scientific discovery from this volume of data, new processing paradigms are necessary to keep pace. With this context, this dissertation advances fundamental and applied research in 3D point cloud data pre-processing and deep learning from a variety of platforms. We show that the representation of 3D point data is often not ideal and sacrifices fidelity, context or scalability. First ground scanning terrestrial LIght Detection And Ranging (LiDAR) models are shown to have an inherent statistical bias, and present a state of the art method for correcting this, while preserving data fidelity and maintaining semantic structure. This technique is assessed in the dense canopy of Micronesia, with our technique being the best at retaining high levels of detail under extreme down-sampling (\u3c 1%). Airborne systems are then explored with a method which is presented to pre-process data to preserve a global contrast and semantic content in deep learners. This approach is validated with a building footprint detection task from airborne imagery captured in Eastern TN from the 3D Elevation Program (3DEP), our approach was found to achieve significant accuracy improvements over traditional techniques. Finally, topography data spanning the globe is used to assess past and previous global land cover change. Utilizing Shuttle Radar Topography Mission (SRTM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, paired with the airborne preprocessing technique described previously, a model for predicting land-cover change from topography observations is described. The culmination of these efforts have the potential to enhance the capabilities of automated 3D geospatial processing, substantially lightening the burden of analysts, with implications improving our responses to global security, disaster response, climate change, structural design and extraplanetary exploration

    Adapting Computer Vision Models To Limitations On Input Dimensionality And Model Complexity

    Get PDF
    When considering instances of distributed systems where visual sensors communicate with remote predictive models, data traffic is limited to the capacity of communication channels, and hardware limits the processing of collected data prior to transmission. We study novel methods of adapting visual inference to limitations on complexity and data availability at test time, wherever the aforementioned limitations exist. Our contributions detailed in this thesis consider both task-specific and task-generic approaches to reducing the data requirement for inference, and evaluate our proposed methods on a wide range of computer vision tasks. This thesis makes four distinct contributions: (i) We investigate multi-class action classification via two-stream convolutional neural networks that directly ingest information extracted from compressed video bitstreams. We show that selective access to macroblock motion vector information provides a good low-dimensional approximation of the underlying optical flow in visual sequences. (ii) We devise a bitstream cropping method by which AVC/H.264 and H.265 bitstreams are reduced to the minimum amount of necessary elements for optical flow extraction, while maintaining compliance with codec standards. We additionally study the effect of codec rate-quality control on the sparsity and noise incurred on optical flow derived from resulting bitstreams, and do so for multiple coding standards. (iii) We demonstrate degrees of variability in the amount of data required for action classification, and leverage this to reduce the dimensionality of input volumes by inferring the required temporal extent for accurate classification prior to processing via learnable machines. (iv) We extend the Mixtures-of-Experts (MoE) paradigm to adapt the data cost of inference for any set of constituent experts. We postulate that the minimum acceptable data cost of inference varies for different input space partitions, and consider mixtures where each expert is designed to meet a different set of constraints on input dimensionality. To take advantage of the flexibility of such mixtures in processing different input representations and modalities, we train biased gating functions such that experts requiring less information to make their inferences are favoured to others. We finally note that, our proposed data utility optimization solutions include a learnable component which considers specified priorities on the amount of information to be used prior to inference, and can be realized for any combination of tasks, modalities, and constraints on available data

    Optimization Tools for ConvNets on the Edge

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Random Projection in Deep Neural Networks

    Get PDF
    This work investigates the ways in which deep learning methods can benefit from random projection (RP), a classic linear dimensionality reduction method. We focus on two areas where, as we have found, employing RP techniques can improve deep models: training neural networks on high-dimensional data and initialization of network parameters. Training deep neural networks (DNNs) on sparse, high-dimensional data with no exploitable structure implies a network architecture with an input layer that has a huge number of weights, which often makes training infeasible. We show that this problem can be solved by prepending the network with an input layer whose weights are initialized with an RP matrix. We propose several modifications to the network architecture and training regime that makes it possible to efficiently train DNNs with learnable RP layer on data with as many as tens of millions of input features and training examples. In comparison to the state-of-the-art methods, neural networks with RP layer achieve competitive performance or improve the results on several extremely high-dimensional real-world datasets. The second area where the application of RP techniques can be beneficial for training deep models is weight initialization. Setting the initial weights in DNNs to elements of various RP matrices enabled us to train residual deep networks to higher levels of performance
    • …
    corecore