6 research outputs found

    Multi-Criteria Handover Using Modified Weighted TOPSIS Methods for Heterogeneous Networks

    No full text
    Ultra-dense small cell deployment in future 5G networks is a promising solution to the ever increasing demand of capacity and coverage. However, this deployment can lead to severe interference and high number of handovers, which in turn cause increased signaling overhead. In order to ensure service continuity for mobile users, minimize the number of unnecessary handovers and reduce the signaling overhead in heterogeneous networks, it is important to model adequately the handover decision problem. In this paper, we model the handover decision based on the multiple attribute decision making method, namely Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The base stations are considered as alternatives, and the handover metrics are considered as attributes to selecting the proper base station for handover. In this paper, we propose two modified TOPSIS methods for the purpose of handover management in the heterogeneous network. The first method incorporates the entropy weighting technique for handover metrics weighting. The second proposed method uses a standard deviation weighting technique to score the importance of each handover metric. Simulation results reveal that the proposed methods outperformed the existing methods by reducing the number of frequent handovers and radio link failures, in addition to enhancing the achieved mean user throughput

    Access network selection schemes for multiple calls in next generation wireless networks

    Get PDF
    There is an increasing demand for internet services by mobile subscribers over the wireless access networks, with limited radio resources and capacity constraints. A viable solution to this capacity crunch is the deployment of heterogeneous networks. However, in this wireless environment, the choice of the most appropriate Radio Access Technology (RAT) that can Tsustain or meet the quality of service (QoS) requirements of users' applications require careful planning and cost efficient radio resource management methods. Previous research works on access network selection have focused on selecting a suitable RAT for a user's single call request. With the present request for multiple calls over wireless access networks, where each call has different QoS requirements and the available networks exhibit dynamic channel conditions, the choice of a suitable RAT capable of providing the "Always Best Connected" (ABC) experience for the user becomes a challenge. In this thesis, the problem of selecting the suitable RAT that is capable of meeting the QoS requirements for multiple call requests by mobile users in access networks is investigated. In addressing this problem, we proposed the use of Complex PRoprtional ASsesment (COPRAS) and Consensus-based Multi-Attribute Group Decision Making (MAGDM) techniques as novel and viable RAT selection methods for a grouped-multiple call. The performance of the proposed COPRAS multi-attribute decision making approach to RAT selection for a grouped-call has been evaluated through simulations in different network scenarios. The results show that the COPRAS method, which is simple and flexible, is more efficient in the selection of appropriate RAT for group multiple calls. The COPRAS method reduces handoff frequency and is computationally inexpensive when compared with other methods such as the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), Simple Additive Weighting (SAW) and Multiplicative Exponent Weighting (MEW). The application of the proposed consensus-based algorithm in the selection of a suitable RAT for group-multiple calls, comprising of voice, video-streaming, and file-downloading has been intensively investigated. This algorithm aggregates the QoS requirement of the individual application into a collective QoS for the group calls. This new and novel approach to RAT selection for a grouped-call measures and compares the consensus degree of the collective solution and individual solution against a predefined threshold value. Using the methods of coincidence among preferences and coincidence among solutions with a predefined consensus threshold of 0.9, we evaluated the performance of the consensus-based RAT selection scheme through simulations under different network scenarios. The obtained results show that both methods of coincidences have the capability to select the most suitable RAT for a group of multiple calls. However, the method of coincidence among solutions achieves better results in terms of accuracy, it is less complex and the number of iteration before achieving the predefined consensus threshold is reduced. A utility-based RAT selection method for parallel traffic-streaming in an overlapped heterogeneous wireless network has also been developed. The RAT selection method was modeled with constraints on terminal battery power, service cost and network congestion to select a specified number of RATs that optimizes the terminal interface utility. The results obtained show an optimum RAT selection strategy that maximizes the terminal utility and selects the best RAT combinations for user's parallel-streaming for voice, video and file-download

    Big data analytics for large-scale wireless networks: Challenges and opportunities

    Full text link
    © 2019 Association for Computing Machinery. The wide proliferation of various wireless communication systems and wireless devices has led to the arrival of big data era in large-scale wireless networks. Big data of large-scale wireless networks has the key features of wide variety, high volume, real-time velocity, and huge value leading to the unique research challenges that are different from existing computing systems. In this article, we present a survey of the state-of-art big data analytics (BDA) approaches for large-scale wireless networks. In particular, we categorize the life cycle of BDA into four consecutive stages: Data Acquisition, Data Preprocessing, Data Storage, and Data Analytics. We then present a detailed survey of the technical solutions to the challenges in BDA for large-scale wireless networks according to each stage in the life cycle of BDA. Moreover, we discuss the open research issues and outline the future directions in this promising area

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Adaptive reinforcement learning for heterogeneous network selection

    Get PDF
    Next generation 5G mobile wireless networks will consist of multiple technologies for devices to access the network at the edge. One of the keys to 5G is therefore the ability for device to intelligently select its Radio Access Technology (RAT). Current fully distributed algorithms for RAT selection although guaranteeing convergence to equilibrium states, are often slow, require high exploration times and may converge to undesirable equilibria. In this dissertation, we propose three novel reinforcement learning (RL) frameworks to improve the efficiency of existing distributed RAT selection algorithms in a heterogeneous environment, where users may potentially apply a number of different RAT selection procedures. Although our research focuses on solutions for RAT selection in the current and future mobile wireless networks, the proposed solutions in this dissertation are general and suitable to apply for any large scale distributed multi-agent systems. In the first framework, called RL with Non-positive Regret, we propose a novel adaptive RL for multi-agent non-cooperative repeated games. The main contribution is to use both positive and negative regrets in RL to improve the convergence speed and fairness of the well-known regret-based RL procedure. Significant improvements in performance compared to other related algorithms in the literature are demonstrated. In the second framework, called RL with Network-Assisted Feedback (RLNF), our core contribution is to develop a network feedback model that uses network-assisted information to improve the performance of the distributed RL for RAT selection. RLNF guarantees no-regret payoff in the long-run for any user adopting it, regardless of what other users might do and so can work in an environment where not all users use the same learning strategy. This is an important implementation advantage as RLNF can be implemented within current mobile network standards. In the third framework, we propose a novel adaptive RL-based mechanism for RAT selection that can effectively handle user mobility. The key contribution is to leverage forgetting methods to rapidly react to the changes in the radio conditions when users move. We show that our solution improves the performance of wireless networks and converges much faster when users move compared to the non-adaptive solutions. Another objective of the research is to study the impact of various network models on the performance of different RAT selection approaches. We propose a unified benchmark to compare the performances of different algorithms under the same computational environment. The comparative studies reveal that among all the important network parameters that influence the performance of RAT selection algorithms, the number of base stations that a user can connect to has the most significant impact. This finding provides some guidelines for the proper design of RAT selection algorithms for future 5G. Our evaluation benchmark can serve as a reference for researchers, network developers, and engineers. Overall, the thesis provides different reinforcement learning frameworks to improve the efficiency of current fully distributed algorithms for heterogeneous RAT selection. We prove the convergence of the proposed reinforcement learning procedures using the differential inclusion (DI) technique. The theoretical analyses demonstrate that the use of DI not only provides an effective method to study the convergence properties of adaptive procedures in game-theoretic learning, but also yields a much more concise and extensible proof as compared to the classical approaches.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 201
    corecore