1,659 research outputs found

    PP-persistent homology of finite topological spaces

    Get PDF
    Let PP be a finite poset. We will show that for any reasonable PP-persistent object XX in the category of finite topological spaces, there is a P−P- weighted graph, whose clique complex has the same PP-persistent homology as XX

    Persistent Homology Over Directed Acyclic Graphs

    Full text link
    We define persistent homology groups over any set of spaces which have inclusions defined so that the corresponding directed graph between the spaces is acyclic, as well as along any subgraph of this directed graph. This method simultaneously generalizes standard persistent homology, zigzag persistence and multidimensional persistence to arbitrary directed acyclic graphs, and it also allows the study of more general families of topological spaces or point-cloud data. We give an algorithm to compute the persistent homology groups simultaneously for all subgraphs which contain a single source and a single sink in O(n4)O(n^4) arithmetic operations, where nn is the number of vertices in the graph. We then demonstrate as an application of these tools a method to overlay two distinct filtrations of the same underlying space, which allows us to detect the most significant barcodes using considerably fewer points than standard persistence.Comment: Revised versio

    Computing Multidimensional Persistence

    Full text link
    The theory of multidimensional persistence captures the topology of a multifiltration -- a multiparameter family of increasing spaces. Multifiltrations arise naturally in the topological analysis of scientific data. In this paper, we give a polynomial time algorithm for computing multidimensional persistence. We recast this computation as a problem within computational algebraic geometry and utilize algorithms from this area to solve it. While the resulting problem is Expspace-complete and the standard algorithms take doubly-exponential time, we exploit the structure inherent withing multifiltrations to yield practical algorithms. We implement all algorithms in the paper and provide statistical experiments to demonstrate their feasibility.Comment: This paper has been withdrawn by the authors. Journal of Computational Geometry, 1(1) 2010, pages 72-100. http://jocg.org/index.php/jocg/article/view/1

    Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology

    Full text link
    Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into metric spaces, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real world data sets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether persistence-based similarity measure as a graph metric satisfies a set of well-established, desirable properties for graph metrics
    • …
    corecore