483 research outputs found

    Proxy Circuits for Fault-Tolerant Primitive Interfacing in Reconfigurable Devices Targeting Extreme Environments

    Get PDF
    Continuous interface access to device-level primitives in reconfigurable devices in extreme environments is key to reliable operation. However, it is possible for a primitive's interface controller, which is static to be rendered non-operational by a permanent damage in the controller's circuitry. In order to mitigate this, this paper proposes the use of relocatable proxy circuits to provide remote interfacing capability to primitives from anywhere on a reconfigurable device. A demonstration with device register read controller shows that an improvement in fault-tolerance can be achieved

    Energy-efficient Transitional Near-* Computing

    Get PDF
    Studies have shown that communication networks, devices accessing the Internet, and data centers account for 4.6% of the worldwide electricity consumption. Although data centers, core network equipment, and mobile devices are getting more energy-efficient, the amount of data that is being processed, transferred, and stored is vastly increasing. Recent computer paradigms, such as fog and edge computing, try to improve this situation by processing data near the user, the network, the devices, and the data itself. In this thesis, these trends are summarized under the new term near-* or near-everything computing. Furthermore, a novel paradigm designed to increase the energy efficiency of near-* computing is proposed: transitional computing. It transfers multi-mechanism transitions, a recently developed paradigm for a highly adaptable future Internet, from the field of communication systems to computing systems. Moreover, three types of novel transitions are introduced to achieve gains in energy efficiency in near-* environments, spanning from private Infrastructure-as-a-Service (IaaS) clouds, Software-defined Wireless Networks (SDWNs) at the edge of the network, Disruption-Tolerant Information-Centric Networks (DTN-ICNs) involving mobile devices, sensors, edge devices as well as programmable components on a mobile System-on-a-Chip (SoC). Finally, the novel idea of transitional near-* computing for emergency response applications is presented to assist rescuers and affected persons during an emergency event or a disaster, although connections to cloud services and social networks might be disturbed by network outages, and network bandwidth and battery power of mobile devices might be limited

    FPGA dynamic and partial reconfiguration : a survey of architectures, methods, and applications

    Get PDF
    Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays (FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures. We then investigate design flows, and identify the key challenges in making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration has found use, as well as proposing new areas where this capability places FPGAs in a unique position for adoption

    A Field Programmable Gate Array Architecture for Two-Dimensional Partial Reconfiguration

    Get PDF
    Reconfigurable machines can accelerate many applications by adapting to their needs through hardware reconfiguration. Partial reconfiguration allows the reconfiguration of a portion of a chip while the rest of the chip is busy working on tasks. Operating system models have been proposed for partially reconfigurable machines to handle the scheduling and placement of tasks. They are called OS4RC in this dissertation. The main goal of this research is to address some problems that come from the gap between OS4RC and existing chip architectures and the gap between OS4RC models and practical applications. Some existing OS4RC models are based on an impractical assumption that there is no data exchange channel between IP (Intellectual Property) circuits residing on a Field Programmable Gate Array (FPGA) chip and between an IP circuit and FPGA I/O pins. For models that do not have such an assumption, their inter-IP communication channels have severe drawbacks. Those channels do not work well with 2-D partial reconfiguration. They are not suitable for intensive data stream processing. And frequently they are very complicated to design and very expensive. To address these problems, a new chip architecture that can better support inter-IP and IP-I/O communication is proposed and a corresponding OS4RC kernel is then specified. The proposed FPGA architecture is based on an array of clusters of configurable logic blocks, with each cluster serving as a partial reconfiguration unit, and a mesh of segmented buses that provides inter-IP and IP-I/O communication channels. The proposed OS4RC kernel takes care of the scheduling, placement, and routing of circuits under the constraints of the proposed architecture. Features of the new architecture in turns reduce the kernel execution times and enable the runtime scheduling, placement and routing. The area cost and the configuration memory size of the new chip architecture are calculated and analyzed. And the efficiency of the OS4RC kernel is evaluated via simulation using three different task models

    Design and Programming Methods for Reconfigurable Multi-Core Architectures using a Network-on-Chip-Centric Approach

    Get PDF
    A current trend in the semiconductor industry is the use of Multi-Processor Systems-on-Chip (MPSoCs) for a wide variety of applications such as image processing, automotive, multimedia, and robotic systems. Most applications gain performance advantages by executing parallel tasks on multiple processors due to the inherent parallelism. Moreover, heterogeneous structures provide high performance/energy efficiency, since application-specific processing elements (PEs) can be exploited. The increasing number of heterogeneous PEs leads to challenging communication requirements. To overcome this challenge, Networks-on-Chip (NoCs) have emerged as scalable on-chip interconnect. Nevertheless, NoCs have to deal with many design parameters such as virtual channels, routing algorithms and buffering techniques to fulfill the system requirements. This thesis highly contributes to the state-of-the-art of FPGA-based MPSoCs and NoCs. In the following, the three major contributions are introduced. As a first major contribution, a novel router concept is presented that efficiently utilizes communication times by performing sequences of arithmetic operations on the data that is transferred. The internal input buffers of the routers are exchanged with processing units that are capable of executing operations. Two different architectures of such processing units are presented. The first architecture provides multiply and accumulate operations which are often used in signal processing applications. The second architecture introduced as Application-Specific Instruction Set Routers (ASIRs) contains a processing unit capable of executing any operation and hence, it is not limited to multiply and accumulate operations. An internal processing core located in ASIRs can be developed in C/C++ using high-level synthesis. The second major contribution comprises application and performance explorations of the novel router concept. Models that approximate the achievable speedup and the end-to-end latency of ASIRs are derived and discussed to show the benefits in terms of performance. Furthermore, two applications using an ASIR-based MPSoC are implemented and evaluated on a Xilinx Zynq SoC. The first application is an image processing algorithm consisting of a Sobel filter, an RGB-to-Grayscale conversion, and a threshold operation. The second application is a system that helps visually impaired people by navigating them through unknown indoor environments. A Light Detection and Ranging (LIDAR) sensor scans the environment, while Inertial Measurement Units (IMUs) measure the orientation of the user to generate an audio signal that makes the distance as well as the orientation of obstacles audible. This application consists of multiple parallel tasks that are mapped to an ASIR-based MPSoC. Both applications show the performance advantages of ASIRs compared to a conventional NoC-based MPSoC. Furthermore, dynamic partial reconfiguration in terms of relocation and security aspects are investigated. The third major contribution refers to development and programming methodologies of NoC-based MPSoCs. A software-defined approach is presented that combines the design and programming of heterogeneous MPSoCs. In addition, a Kahn-Process-Network (KPN) –based model is designed to describe parallel applications for MPSoCs using ASIRs. The KPN-based model is extended to support not only the mapping of tasks to NoC-based MPSoCs but also the mapping to ASIR-based MPSoCs. A static mapping methodology is presented that assigns tasks to ASIRs and processors for a given KPN-model. The impact of external hardware components such as sensors, actuators and accelerators connected to the processors is also discussed which makes the approach of high interest for embedded systems

    Modular Remote Reprogramming of Sensor Nodes

    Get PDF
    Wireless sensor networks are envisioned to be deployed in the absence of permanent network infrastructure and in environments with limited or no human accessibility. Hence, such deployments demand mechanisms to remotely (i.e., over the air) reconfigure and update the software on the nodes. In this paper we introduce DyTOS, a TinyOS based remote reprogramming approach that enables the dynamic exchange of software components and thus incrementally update the operating system and its applications. The core idea is to preserve the modularity of TinyOS, i.e., its componentisation, which is lost during the normal compilation process, and enable runtime composition of TinyOS components on the sensor node. The proposed solution integrates seamlessly into the system architecture of TinyOS: It does not require any changes to the programming model of TinyOS and all existing components can be reused transparently. Our evaluation shows that DyTOS incurs a low performance overhead while keeping a smaller – up to one third – memory footprint than other comparable solutions

    Reconfigurable Computing Based on Commercial FPGAs. Solutions for the Design and Implementation of Partially Reconfigurable Systems = Computación reconfigurable basada en FPGAs comerciales. Soluciones para el diseño e implementación de sistemas parcialmente reconfigurables.

    Get PDF
    Esta tesis doctoral está enmarcada en el campo de investigación de la computación reconfigurable. Este campo ha experimentado un crecimiento abrumador en los últimos años como resultado de la evolución de los dispositivos reconfigurables, donde las Field Programmable Gate Arrays (FPGAs) son el máximo exponente desde el punto de vista comercial. De forma tradicional las empresas de electrónica han seleccionado las FPGAs como prototipos iníciales de productos de altas prestaciones. Luego el sistema final es integrado en Application Specific Integrated Circuits (ASICs) que se producen en grandes volúmenes perimiendo amortiza su alto coste de diseño y producción y aprovechando la ventaja del bajo coste por unidad. Por otro lado, los DSPs (Digital Signal Processing) y los microprocesadores han sido preferidos por su bajo coste ante las FPGAs el campo de los dispositivos con menores requisitos de cómputo. En los últimos años, este panorama está sufriendo una serie de cambios. Ahora el mercado busca mas soluciones “reconfigurables” ya que permiten reducir el tiempo de salida del producto al mercado (time-to-market), aumentar el tiempo del producto en el mercado (time-in-market) y además cubren los amplios requisitos de cómputo. El cambio que se observa, se debe a que los dispositivos programables han evolucionado de simples estructuras programables a complejas plataformas reconfigurables. Las FPGAs del estado de la técnica han alcanzado un grado de integración muy alto y además ahora contienen, dentro de su arquitectura programable, microprocesadores y lógica específica de procesamiento digital de señal. Otro factor sumamente importante para el cambio es que las FPGAs permiten el diseño de dispositivos cuyo hardware pueden ser adaptado, o actualizado, una vez que el producto ya esta entregado e instalado, obteniendo así una flexibilidad en el hardware comparable con la del software, donde la actualización postventa de los sistemas es una práctica muy explotada de cara a la reducción de costes y la salida rápida al mercado. Por otro lado, y sobre todo en el ámbito académico, existen dispositivos reconfigurables con distinta granularidad que permites alcanzar altas prestaciones en comparación con las FPGAs comerciales de grano fino (comparable con la de los ASICs), pero están restringidas a una aplicación o grupo de aplicaciones. A pesar de que los dispositivos reconfigurables propietarios ofrecen muchas ventajas, esta opción ha sido descartada en la presente tesis debido a que, desde el punto de vista industrial requieren, aparte del diseño del ASIC reconfigurable, el desarrollo de un entorno de diseño completo. Todo esto conlleva a un elevado coste de recursos, además del alejamiento de las propuestas de la industria. La presente tesis se ha centrado en proporcionar soluciones para dispositivos comerciales, FPGAs de grano fino, con la finalidad de aprovechar las herramientas existentes y mantener las soluciones propuestas lo más cerca posible de la industria. Los dispositivos reconfigurables proporcionan diversos métodos de reconfiguración, siendo el más atractivo la reconfiguración parcial y dinámica, ya que permite adaptar el dispositivo sin interrumpir su funcionamiento y crear dispositivos auto-adaptables. Este tipo de reconfiguración será el objeto de estudio de la tesis doctoral. La reconfiguración parcial permite tener una serie de tareas hardware (módulos que se ubican en la estructura reconfigurable) ejecutándose paralelamente en la FPGA y sustituir un bloque por otro, dependiendo de las necesidades del sistema, sin alterar el funcionamiento del resto de bloques. Esta idea básica en teoría brinda la flexibilidad del software al hardware, que combinado con su paralelismo implícito hace del sistema reconfigurable una potente herramienta que puede dar pie a la creación de sistemas adaptables o incluso autoadaptativos, supercomputadores reconfigurables y hardware bio-inspirado entre otros. Por otro lado, a pesar que algunos proveedores de FPGAs permiten la reconfiguración parcial, el uso de esta técnica aún está restringido al ámbito académico y a sistemas muy básicos. El trabajo de investigación descrito dentro de la presente tesis doctoral ha tenido por objeto el estudio de diversos aspectos de los sistemas parcialmente reconfigurables, la identificación de las principales deficiencias de las soluciones existentes y la propuesta de nuevas soluciones originales. Como resultado del estudio del estado del arte se ha visto que las soluciones existentes son poco flexibles y la escalabilidad de los sistemas que se pueden diseñar es reducida. Por ello las propuestas originales de esta tesis tienen como objetivo permitir el diseño e implementación de sistemas parcialmente reconfigurables con alta escalabilidad y flexibilidad. La tesis principal del trabajo de investigación ha sido basada en la idea que para obtener una mayor flexibilidad de los sistemas se debe desligar el diseño del sistema reconfigurable del diseño de los cores que serán consumidos por dicho sistema. La tesis doctoral ha contribuido proponiendo mejores soluciones a nivel de arquitectura, flujos de diseño y herramientas que han permitido el diseño e implementación de diversos sistemas parcialmente reconfigurables con distinto grado de flexibilidad y escalabilidad. La flexibilidad y la escalabilidad son términos que en los sistemas reconfigurables se pueden asociar a diversos aspectos. Dentro de esta tesis la flexibilidad está asociada principalmente a la diversidad de cores o tareas hardware que pueden ser consumidos o integrados en un sistema ya definido, mientras que la escalabilidad está referida al número de cores que pueden coexistir en el sistema y ser reconfigurados independientemente. Para poder diseñar sistemas flexibles y escalables, estas características deben estar cubiertas en distintos niveles. Más en detalle dentro de la presente tesis, desde el punto de vista de la arquitectura, la flexibilidad está cubierta por la posibilidad de posicionar libremente cores en una arquitectura escalable predefinida. Desde el punto de vista del sistema, la flexibilidad está reflejada por la posibilidad de no sólo de modificar o reconfigurar un core del sistema hardware, sino también de modificar las comunicaciones internas del mismo. Desde el punto de vista del dispositivo, la flexibilidad está garantizada por la transparencia en el proceso de reconfiguración. Por último, la flexibilidad en el proceso de diseño está cubierta por la definición de herramientas y flujos de diseño que permiten por un lado desligar el diseño del sistema reconfigurable del diseño de los cores para el sistema, y por otro lado que diseñadores sin conocimientos detallados de reconfiguración parcial puedan diseñar cores. Dentro de la tesis doctoral se presentan cuatro dispositivos reconfigurable integrados en distintos entornos y con distinto grado de flexibilidad que corresponde al grado de aprovechamiento de las aportaciones originales de la tesis. Las principales aportaciones de la tesis doctoral, relacionadas a cada uno de los aspectos mencionados en el párrafo anterior, y tratados en distintas partes de la tesis se resumen a continuación destacando en la medida de lo posible las diferencias con respecto al estado del arte: Se ha definido una metodología de diseño de Arquitecturas Virtuales (abstracción de la arquitectura física de la FPGA que incluye la distribución de los recursos programables en slots y la forma de interconexión de los slots). La metodología, propuesta originalmente en esta tesis, permite el diseño de sistemas reconfigurables con alta flexibilidad y escalabilidad comparadas con el estado del arte. Una solución a la adaptación de las comunicaciones internas en los sistemas reconfigurables llamada DRNoC (Dynamic Reconfigurable NoC). La solución original abarca diversos aspectos e incluye la definición de una arquitectura de interconexión para los sistemas reconfigurables basada en redes en chip (Network on Chip - NoC), la definición de métodos de reconfiguración y el direccionamiento interno del sistema, y de forma más específica para las comunicaciones basadas en redes, la definición de un formato de tramas y la arquitectura de los enrutadores. La principal diferencia de la solución propuesta con el estado del arte es que DRNoC no restringe la comunicación únicamente a NoCs y permite la definición de cualquier tipo de esquema de comunicación (NoC, punto a punto, punto a multipunto, bus, o una combinación de las anteriores) y además, permite que varios esquemas de comunicación coexistan en el mismo sistema y que funcionen de forma independiente. De esta forma la solución propuesta brinda una mayor flexibilidad que las ya existentes. Se ha propuesto una solución para la manipulación de los ficheros de configuración para las FPGA del tipo Virtex II/Pro que es la más completa comparada con el estado del arte. Asimismo, una serie de herramientas que permiten la generación y extracción de cores para sistemas reconfigurables basados en FPGA Virtex II que ha sido la primera solución existente para estas FPGA. Un flujo de diseño para cores basado en plantillas que permite el diseño de cores hardware sin ser un experto en reconfiguración parcial y sin conocer los detalles del sistema final en el que se implementará el core. El diseño, implementación y prueba de un sistema parcialmente reconfigurable basado en FPGAs comerciales de grano fino para redes de sensores. La primera aproximación existente en el estado del arte al uso de los sistemas parcialmente reconfigurables en las redes de sensores. La integración de un sistema reconfigurable en un entorno cliente-servidor que incluye un original sistema de control de la reconfiguración. Una solución para la depuración de los sistemas reconfigurables. Un sistema de emulación y prototipado rápido de las comunicaciones dentro de un chip basado originalmente en la idea de la reutilización de cores hardware por medio de la técnica de reconfiguración parcial. Como conclusión global del trabajo de investigación realizado cabe destacar que la presente tesis ha dado lugar a la creación y consolidación de una línea de investigación en el grupo de electrónica digital del Centro de Electrónica Industrial que actualmente se encuentra entre las más activas y de mayor importancia. Además, el trabajo de investigación y la divulgación de las aportaciones originales han permitido que el centro de investigación pase a formar parte del estado del arte de los sistemas parcialmente reconfigurables. The thesis is enclosed in the research area of reconfigurable computing which, in the last years, has experienced a remarkable growth as a result of the impressive evolution of reconfigurable devices. In this area, Field Programmable Gate Arrays (FPGAs) are the most outstanding representative from the commercial point of view. Traditionally FPGAs have been used for prototyping, in previous to the final Application Specific Integrated Circuit (ASIC) design stages. However, the interest in the integration of FPGAs in final products has been growing in the last years. FPGAs are preferred for small production volumes, where the ASIC masks high cost is unaffordable and also in products where time-to-market is a priority, and waiting for a complete ASIC design cycle is not desirable. State of the art FPGAs are highly integrated electronic circuits, composed of tens of millions of system gates, with competitive speed, performance and configurability. These devices have evolved from simple gate arrays to complex platforms that include embedded memory, multipliers and even microprocessors and digital signal processing elements. Additionally, the fine grain nature of the reconfigurable arrays, make FPGAs suitable for a broad set of application domains. On the other side, and mostly in the academic community, there are custom reconfigurable devices with different granularity levels that permit to achieve higher performance, compared to commercial FPGAs, but for a certain application domain. Although there are very good solutions in the academic state of the art, their main drawback from the industry point of view is that they require specific design environments and also, that the efforts and resources needed for designing such solutions are very high. This thesis work is focused on providing solutions that target commercial fine grain reconfigurable devices, FPGAs, in order to take advantage of existing tools and to keep the proposed solutions closer to the industry. Today FPGAs provide different reconfiguration options. Among them, the most challenging one is partial reconfiguration. This feature has special interest, as it permits system updates on the fly once the device is deployed, without the need of stopping it and without theoretical loss of performance. Partial reconfiguration is also an attractive feature because it permits to allocate different tasks/cores running in parallel in the device and change them on the fly as needed without disturbing other tasks/cores. This basic idea, brings software-like flexibility to hardware which, in combination with its inherited parallelism, opens the door for a broad amount of possibilities and applications, like runtime adaptive super-computing, adaptive embedded software ii accelerators, bio-inspired, self-reconfigurable and self-arrangeable systems. However, even though some commercial FPGAs provide partial reconfiguration features, its utilization is still in its early stages and it is not well supported by FPGA vendors, making its exploitation in real electronic systems very difficult. Therefore, there are several academic groups working to provide alternative solutions for the design and implementation of partially reconfigurable systems based on commercial FPGAs that intend to stimulate their integration and use in the industry. This research work intents to study different aspects of partially reconfigurable system on-chip and contribute with flexibility improvements. The main idea that will be followed along the thesis is that the design of reconfigurable systems will be considered an independent process from the design of cores that will be consumed by the system. This approach involves the design of flexible and scalable partial runtime reconfigurable systems, where most of the thesis contribution will be focused. More in detail, this thesis will contribute to improve architecture solutions, design tools and design flows of partially reconfigurable systems for commercial FPGAs and provide systems with higher flexibility and scalability. Flexibility and scalability in a reconfigurable system are terms that can be related to several aspects. In this thesis flexibility is mainly related to the diversity of tasks or cores a system can consume, while scalability is connected to the number of cores that can run in parallel and be independently reconfigured. Flexibility and scalability have to be covered by the system at different levels and the work presented in this thesis will contribute in all the specific levels. More in detail, from an architectural point of view, flexibility is reflected by the possibility of freely loading tasks or cores in a defined, scalable architecture. From the system point of view, flexibility is related to the possibility of modifying not only the system functionality by loading different tasks, but also to adapt the on-chip communications. From the device point of view, flexibility is reflected by the reconfiguration process transparency and, from the design point of view, it is oriented to the definition of design tools and flows that will permit, as far as possible, non specialized designers to design cores for a partially reconfigurable system and without knowing the system details. All the original proposed solutions, in each individual aspect, will be compared with the state of the art and complete systems solutions will be designed and will be integrated in different application domains in order to validate the thesis proposals. In order to achieve better understanding of the thesis and to facilitate the comparison with some, selected, related work, the thesis structure is not traditional. Instead of including a state of the art and a result Chapter, each Chapter is focused on a specific aspect of partially reconfigurable system design and includes state of the art and result sections. The first chapter, Chapter 1, introduces the main concepts to be used in the thesis. Chapter 2 is focused on reconfigurable systems architectures, contributing with architecture solutions and a design method. Chapter 3 proposes a solution that enhances the features of the architectures defined in Chapter 2, and provides more flexibility to the entire system by extending reconfiguration to the on-chip communication. Chapter 4 is related to the design flows and tools, where contributions are made in both aspects and the proposed solutions are compared with the state of the Abstract and Thesis Organization iii art. Complete systems, with different independency levels, are presented in Chapter 5 in order to validate the thesis contributions. Conclusions, a summary of contributions and the future work are included in Chapter 6. A more detailed description of each Chapter content is presented below: Chapter 1 provides an introduction to the reconfigurable systems based on FPGAs topic, by first defining the place of FPGAs in the electronic industry and afterwards, introducing the main concepts to be used along the thesis. Although the focus is put on commercial reconfigurable devices, some custom reconfigurable systems are also described in order to have a complete view of the options in reconfigurable devices. The Chapter discuses the thesis main topic, related to partial runtime reconfigurable systems, highlighting its main advantages and disadvantages and, introducing some of the approaches to be followed in this thesis. The main term introduced in this Chapter, associated to reconfigurable systems architectures, is ”Virtual Architecture”. The term defines the architecture of the partially reconfigurable system and how the different regions it is composed of are interconnected. A brief summary of the thesis main goals is included at the end of the Chapter. The main topic of Chapter 2 is related to reconfigurable systems architectures design. The Chapter includes a specific state of the art section that reviews some existing architecture solutions. After that, a general method for virtual architectures design, an original thesis contribution, is presented in detail. Afterwards, the method is applied to the design of general one dimensional (1D) and two dimensional (2D) architectures for Xilinx Virtex II/Pro FPGAs and, as an example, following the specific steps of the method, two 1D, bus based, architectures are designed. The architecture buses are compared with two state of the art solutions in terms of area and performance in the results section of the same Chapter. Chapter 3 is focused on reconfigurable systems on-chip communication issues, where the need of adaptability is the main topic. Again, a state of the art description of some 2D reconfigurable systems is presented at the beginning of the Chapter and, afterwards, an original solution, called Dynamic Reconfigurable NoC (DRNoC), is proposed. This solution covers different aspects. First, an architecture oriented to support adaptability in the on-chip communications is originally proposed. The architecture is mapped to a Virtex II FPGA by modifying a virtual architecture from the general ones presented in Chapter 2. Second, two types of reconfigurations that span through different levels of the OSI communication model are originally proposed. Third, a set of Network on Chip models, focused on the communication adaptability are designed and/or adapted and presented in the Chapter, along with an original NoC packet format and router architecture. These models are mapped to the DRNoC architecture and implementation cost parameters are defined and used to evaluate different implementation options. Regarding the architecture reconfigurability, it is important to remark that along the entire Chapter, intermediate test of possible partial reconfigurations and test results are included. At the end of the Chapter, the proposed architecture is compared with the state of the art using a set of structural parameters taken from a reference work and complemented with others defined in the Chapter. Chapter 4, focuses on the design tools and flows for partially reconfigurable systems. Again, an overview of the state of the art is included at the beginning of the Chapter. Abstract and Thesis Organization iv Afterwards, an original software solution for Virtex II configuration files (bitstreams) manipulations is presented. The first part of the solution is a study of the Virtex II/Pro FPGA bitstream format, used to define a set of equations for accessing a specific bitstream resource (at register or block level). Based on these equations, a set of tools for bitstream manipulation that target resource restricted devices are originally presented. Also, a design flow, based on systems and virtual architectures templates, which permits a straightforward core design by non partial reconfiguration experts and without knowing the system details, is originally proposed. In Chapter 5 four reconfigurable systems with different flexibility level, which corresponds to the level of the thesis proposals exploitation, are presented. The selected application domains attempt to demonstrate different advantages of the use of partial runtime reconfigurable systems and therefore are mainly a proof of concept. The first domain belongs to the wireless sensor networks, where t

    Thermal Management for Dependable On-Chip Systems

    Get PDF
    This thesis addresses the dependability issues in on-chip systems from a thermal perspective. This includes an explanation and analysis of models to show the relationship between dependability and tempature. Additionally, multiple novel methods for on-chip thermal management are introduced aiming to optimize thermal properties. Analysis of the methods is done through simulation and through infrared thermal camera measurements

    A Multi-layer Fpga Framework Supporting Autonomous Runtime Partial Reconfiguration

    Get PDF
    Partial reconfiguration is a unique capability provided by several Field Programmable Gate Array (FPGA) vendors recently, which involves altering part of the programmed design within an SRAM-based FPGA at run-time. In this dissertation, a Multilayer Runtime Reconfiguration Architecture (MRRA) is developed, evaluated, and refined for Autonomous Runtime Partial Reconfiguration of FPGA devices. Under the proposed MRRA paradigm, FPGA configurations can be manipulated at runtime using on-chip resources. Operations are partitioned into Logic, Translation, and Reconfiguration layers along with a standardized set of Application Programming Interfaces (APIs). At each level, resource details are encapsulated and managed for efficiency and portability during operation. An MRRA mapping theory is developed to link the general logic function and area allocation information to the device related physical configuration level data by using mathematical data structure and physical constraints. In certain scenarios, configuration bit stream data can be read and modified directly for fast operations, relying on the use of similar logic functions and common interconnection resources for communication. A corresponding logic control flow is also developed to make the entire process autonomous. Several prototype MRRA systems are developed on a Xilinx Virtex II Pro platform. The Virtex II Pro on-chip PowerPC core and block RAM are employed to manage control operations while multiple physical interfaces establish and supplement autonomous reconfiguration capabilities. Area, speed and power optimization techniques are developed based on the developed Xilinx prototype. Evaluations and analysis of these prototype and techniques are performed on a number of benchmark and hashing algorithm case studies. The results indicate that based on a variety of test benches, up to 70% reduction in the resource utilization, up to 50% improvement in power consumption, and up to 10 times increase in run-time performance are achieved using the developed architecture and approaches compared with Xilinx baseline reconfiguration flow. Finally, a Genetic Algorithm (GA) for a FPGA fault tolerance case study is evaluated as a ultimate high-level application running on this architecture. It demonstrated that this is a hardware and software infrastructure that enables an FPGA to dynamically reconfigure itself efficiently under the control of a soft microprocessor core that is instantiated within the FPGA fabric. Such a system contributes to the observed benefits of intelligent control, fast reconfiguration, and low overhead
    corecore