1,412 research outputs found

    RiPLE: Recommendation in Peer-Learning Environments Based on Knowledge Gaps and Interests

    Full text link
    Various forms of Peer-Learning Environments are increasingly being used in post-secondary education, often to help build repositories of student generated learning objects. However, large classes can result in an extensive repository, which can make it more challenging for students to search for suitable objects that both reflect their interests and address their knowledge gaps. Recommender Systems for Technology Enhanced Learning (RecSysTEL) offer a potential solution to this problem by providing sophisticated filtering techniques to help students to find the resources that they need in a timely manner. Here, a new RecSysTEL for Recommendation in Peer-Learning Environments (RiPLE) is presented. The approach uses a collaborative filtering algorithm based upon matrix factorization to create personalized recommendations for individual students that address their interests and their current knowledge gaps. The approach is validated using both synthetic and real data sets. The results are promising, indicating RiPLE is able to provide sensible personalized recommendations for both regular and cold-start users under reasonable assumptions about parameters and user behavior.Comment: 25 pages, 7 figures. The paper is accepted for publication in the Journal of Educational Data Minin

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Health recommender system design in the context of CAREGIVERSPRO-MMD project

    Get PDF
    CAREGIVERSPRO-MMD an EU H2020 funded project aims to build a digital platform focusing on people living with dementia and their caregivers, offering a selection of advanced, individually tailored services enabling them to live well in the community for as long as possible. This paper provides an outline of a health recommender system designed in the context of the project to provide tailored interventions to caregivers and people living with dementia.Peer ReviewedPostprint (published version

    Personalisation and recommender systems in digital libraries

    Get PDF
    Widespread use of the Internet has resulted in digital libraries that are increasingly used by diverse communities of users for diverse purposes and in which sharing and collaboration have become important social elements. As such libraries become commonplace, as their contents and services become more varied, and as their patrons become more experienced with computer technology, users will expect more sophisticated services from these libraries. A simple search function, normally an integral part of any digital library, increasingly leads to user frustration as user needs become more complex and as the volume of managed information increases. Proactive digital libraries, where the library evolves from being passive and untailored, are seen as offering great potential for addressing and overcoming these issues and include techniques such as personalisation and recommender systems. In this paper, following on from the DELOS/NSF Working Group on Personalisation and Recommender Systems for Digital Libraries, which met and reported during 2003, we present some background material on the scope of personalisation and recommender systems in digital libraries. We then outline the working group’s vision for the evolution of digital libraries and the role that personalisation and recommender systems will play, and we present a series of research challenges and specific recommendations and research priorities for the field

    Graph-based Recommendation for Sparse and Heterogeneous User Interactions

    Full text link
    Recommender system research has oftentimes focused on approaches that operate on large-scale datasets containing millions of user interactions. However, many small businesses struggle to apply state-of-the-art models due to their very limited availability of data. We propose a graph-based recommender model which utilizes heterogeneous interactions between users and content of different types and is able to operate well on small-scale datasets. A genetic algorithm is used to find optimal weights that represent the strength of the relationship between users and content. Experiments on two real-world datasets (which we make available to the research community) show promising results (up to 7% improvement), in comparison with other state-of-the-art methods for low-data environments. These improvements are statistically significant and consistent across different data samples

    Improving cold-start recommendations using item-based stereotypes

    Get PDF
    Recommender systems (RSs) have become key components driving the success of e-commerce and other platforms where revenue and customer satisfaction is dependent on the user’s ability to discover desirable items in large catalogues. As the number of users and items on a platform grows, the computational complexity and the sparsity problem constitute important challenges for any recommendation algorithm. In addition, the most widely studied filtering-based RSs, while effective in providing suggestions for established users and items, are known for their poor performance for the new user and new item (cold-start) problems. Stereotypical modelling of users and items is a promising approach to solving these problems. A stereotype represents an aggregation of the characteristics of the items or users which can be used to create general user or item classes. We propose a set of methodologies for the automatic generation of stereotypes to address the cold-start problem. The novelty of the proposed approach rests on the findings that stereotypes built independently of the user-to-item ratings improve both recommendation metrics and computational performance during cold-start phases. The resulting RS can be used with any machine learning algorithm as a solver, and the improved performance gains due to rate-agnostic stereotypes are orthogonal to the gains obtained using more sophisticated solvers. The paper describes how such item-based stereotypes can be evaluated via a series of statistical tests prior to being used for recommendation. The proposed approach improves recommendation quality under a variety of metrics and significantly reduces the dimension of the recommendation model

    A Self-Regulated Learning Approach to Educational Recommender Design

    Get PDF
    Recommender systems, or recommenders, are information filtering systems prevalent today in many fields. One type of recommender found in the field of education, the educational recommender, is a key component of adaptive learning solutions as these systems avoid “one-size-fits-all” approaches by tailoring the learning process to the needs of individual learners. To function, these systems utilize learning analytics in a student-facing manner. While existing research has shown promise and explores a variety of types of educational recommenders, there is currently a lack of research that ties educational theory to the design and implementation of these systems. The theory considered here, self-regulated learning, is underexplored in educational recommender research. Self-regulated learning advocates a cyclical feedback loop that focuses on putting students in control of their learning with consideration for activities such as goal setting, selection of learning strategies, and monitoring of one’s performance. The goal of this research is to explore how best to build a self-regulated learning guided educational recommender and discover its influence on academic success. This research applies a design science methodology in the creation of a novel educational recommender framework with a theoretical base in self-regulated learning. Guided by existing research, it advocates for a hybrid recommender approach consisting of knowledge-based and collaborative filtering, made possible by supporting ontologies that represent the learner, learning objects, and learner actions. This research also incorporates existing Information Systems (IS) theory in the evaluation, drawing further connections between these systems and the field of IS. The self-regulated learning-based recommender framework is evaluated in a higher education environment via a web-based demonstration in several case study instances using mixed-method analysis to determine this approach’s fit and perceived impact on academic success. Results indicate that the self-regulated learning-based approach demonstrated a technology fit that was positively related to student academic performance while student comments illuminated many advantages to this approach, such as its ability to focus and support various studying efforts. In addition to contributing to the field of IS research by delivering an innovative framework and demonstration, this research also results in self-regulated learning-based educational recommender design principles that serve to guide both future researchers and practitioners in IS and education

    A scalable recommender system : using latent topics and alternating least squares techniques

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsA recommender system is one of the major techniques that handles information overload problem of Information Retrieval. Improves access and proactively recommends relevant information to each user, based on preferences and objectives. During the implementation and planning phases, designers have to cope with several issues and challenges that need proper attention. This thesis aims to show the issues and challenges in developing high-quality recommender systems. A paper solves a current research problem in the field of job recommendations using a distributed algorithmic framework built on top of Spark for parallel computation which allows the algorithm to scale linearly with the growing number of users. The final solution consists of two different recommenders which could be utilised for different purposes. The first method is mainly driven by latent topics among users, meanwhile the second technique utilises a latent factor algorithm that directly addresses the preference-confidence paradigm
    corecore