6,379 research outputs found

    Reducing algorithm for percolation cluster analysis

    Get PDF
    The determination of percolation threshold is the substantial question for a lot of problems which may be modeled by the formalism of cellular automata. There is a set of well known algorithms which deal with this topic. All of them have some advantages and drawbacks connected to calculational or memory complexity. In our work we are going to present a new approach which we call reducing algorithm. In our procedure we avoid the large memory occupancy which is usually connected to the algorithms aiming not only at confirming the existence of percolation cluster. Our approach makes it also possible to reduce time complexity by only single scan through the analyzed space. In the paper we present some basics of algorithm and the comparison of its effectiveness to other, mentioned earlier, ones

    Physical-depth architectural requirements for generating universal photonic cluster states

    Get PDF
    Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as a universal resource for measurement-based (one-way) quantum computation (MBQC). In ballistic approaches to LOQC, cluster states are generated passively from small entangled resource states using so-called fusion operations. Results from percolation theory have previously been used to argue that universal cluster states can be generated in the ballistic approach using schemes which exceed the critical threshold for percolation, but these results consider cluster states with unbounded size. Here we consider how successful percolation can be maintained using a physical architecture with fixed physical depth, assuming that the cluster state is continuously generated and measured, and therefore that only a finite portion of it is visible at any one point in time. We show that universal LOQC can be implemented using a constant-size device with modest physical depth, and that percolation can be exploited using simple pathfinding strategies without the need for high-complexity algorithms.Comment: 18 pages, 10 figure

    Efficient Cluster Algorithm for Spin Glasses in Any Space Dimension

    Get PDF
    Spin systems with frustration and disorder are notoriously difficult to study both analytically and numerically. While the simulation of ferromagnetic statistical mechanical models benefits greatly from cluster algorithms, these accelerated dynamics methods remain elusive for generic spin-glass-like systems. Here we present a cluster algorithm for Ising spin glasses that works in any space dimension and speeds up thermalization by at least one order of magnitude at temperatures where thermalization is typically difficult. Our isoenergetic cluster moves are based on the Houdayer cluster algorithm for two-dimensional spin glasses and lead to a speedup over conventional state-of-the-art methods that increases with the system size. We illustrate the benefits of the isoenergetic cluster moves in two and three space dimensions, as well as the nonplanar chimera topology found in the D-Wave Inc.~quantum annealing machine.Comment: 5 pages, 4 figure

    Probability-Changing Cluster Algorithm: Study of Three-Dimensional Ising Model and Percolation Problem

    Full text link
    We present a detailed description of the idea and procedure for the newly proposed Monte Carlo algorithm of tuning the critical point automatically, which is called the probability-changing cluster (PCC) algorithm [Y. Tomita and Y. Okabe, Phys. Rev. Lett. {\bf 86} (2001) 572]. Using the PCC algorithm, we investigate the three-dimensional Ising model and the bond percolation problem. We employ a refined finite-size scaling analysis to make estimates of critical point and exponents. With much less efforts, we obtain the results which are consistent with the previous calculations. We argue several directions for the application of the PCC algorithm.Comment: 6 pages including 8 eps figures, to appear in J. Phys. Soc. Jp

    Optimal percolation on multiplex networks

    Full text link
    Optimal percolation is the problem of finding the minimal set of nodes such that if the members of this set are removed from a network, the network is fragmented into non-extensive disconnected clusters. The solution of the optimal percolation problem has direct applicability in strategies of immunization in disease spreading processes, and influence maximization for certain classes of opinion dynamical models. In this paper, we consider the problem of optimal percolation on multiplex networks. The multiplex scenario serves to realistically model various technological, biological, and social networks. We find that the multilayer nature of these systems, and more precisely multiplex characteristics such as edge overlap and interlayer degree-degree correlation, profoundly changes the properties of the set of nodes identified as the solution of the optimal percolation problem.Comment: 7 pages, 5 figures + appendi

    Percolation Threshold, Fisher Exponent, and Shortest Path Exponent for 4 and 5 Dimensions

    Full text link
    We develop a method of constructing percolation clusters that allows us to build very large clusters using very little computer memory by limiting the maximum number of sites for which we maintain state information to a number of the order of the number of sites in the largest chemical shell of the cluster being created. The memory required to grow a cluster of mass s is of the order of sθs^\theta bytes where θ\theta ranges from 0.4 for 2-dimensional lattices to 0.5 for 6- (or higher)-dimensional lattices. We use this method to estimate dmind_{\scriptsize min}, the exponent relating the minimum path ℓ\ell to the Euclidean distance r, for 4D and 5D hypercubic lattices. Analyzing both site and bond percolation, we find dmin=1.607±0.005d_{\scriptsize min}=1.607\pm 0.005 (4D) and dmin=1.812±0.006d_{\scriptsize min}=1.812\pm 0.006 (5D). In order to determine dmind_{\scriptsize min} to high precision, and without bias, it was necessary to first find precise values for the percolation threshold, pcp_c: pc=0.196889±0.000003p_c=0.196889\pm 0.000003 (4D) and pc=0.14081±0.00001p_c=0.14081\pm 0.00001 (5D) for site and pc=0.160130±0.000003p_c=0.160130\pm 0.000003 (4D) and pc=0.118174±0.000004p_c=0.118174\pm 0.000004 (5D) for bond percolation. We also calculate the Fisher exponent, τ\tau, determined in the course of calculating the values of pcp_c: τ=2.313±0.003\tau=2.313\pm 0.003 (4D) and τ=2.412±0.004\tau=2.412\pm 0.004 (5D)

    On the Aizenman exponent in critical percolation

    Full text link
    The probabilities of clusters spanning a hypercube of dimensions two to seven along one axis of a percolation system under criticality were investigated numerically. We used a modified Hoshen--Kopelman algorithm combined with Grassberger's "go with the winner" strategy for the site percolation. We carried out a finite-size analysis of the data and found that the probabilities confirm Aizenman's proposal of the multiplicity exponent for dimensions three to five. A crossover to the mean-field behavior around the upper critical dimension is also discussed.Comment: 5 pages, 4 figures, 4 table
    • …
    corecore