6 research outputs found

    Low Energy Solutions for Multi- and Triple-Level Cell Non-Volatile Memories

    Get PDF
    Due to the high refresh power and scalability issues of DRAM, non-volatile memories (NVM) such as phase change memory (PCM) and resistive RAM (RRAM) are being actively investigated as viable replacements of DRAM. However, although these NVMs are more scalable than DRAM, they have shortcomings such as higher write energy and lower endurance. Further, the increased capacity of multi- and triple-level cells (MLC/TLC) in these NVM technologies comes at the cost of even higher write energies and lower endurance attributed to the MLC/TLC program-and-verify (P&V) techniques. This dissertation makes the following contributions to address the high write energy associated with MLC/TLC NVMs. First, we describe MFNW, a Flip-N-Write encoding that effectively reduces the write energy and improves the endurance of MLC NVMs. MFNW encodes an MLC/TLC word into a number of codewords and selects the one resulting in lowest write energy. Second, we present another encoding solution that is based on perfect knowledge frequent value encoding (FVE). This encoding technique leverages machine learning to cluster a set of general-purpose applications according to their frequency profiles and generates a dedicated offline FVE for every cluster to maximize energy reduction across a broad spectrum of applications. Whereas the proposed encodings are used as an add-on layer on top of the MLC/TLC P&V solutions, the third contribution is a low latency, low energy P&V (L3EP) approach for MLC/TLC PCM. The primary motivation of L^3EP is to fix the problem from its origin by crafting a higher speed programming algorithm. A reduction in write latency implies a reduction in write energy as well as an improvement in cell endurance. Directions for future research include the integration and evaluation of a software-based hybrid encoding mechanism for MLC/TLC NVMs; this is a page-level encoding that employs a DRAM cache for coding/decoding purposes. The main challenges include how the cache block replacement algorithm can easily access the page-level auxiliary cells to encode the cache block correctly. In summary, this work presents multiple solutions to address major challenges of MLC/TLC NVMs, including write latency, write energy, and cell endurance

    A differentiated proposal of three dimension i/o performance characterization model focusing on storage environments

    Get PDF
    The I/O bottleneck remains a central issue in high-performance environments. Cloud computing, high-performance computing (HPC) and big data environments share many underneath difficulties to deliver data at a desirable time rate requested by high-performance applications. This increases the possibility of creating bottlenecks throughout the application feeding process by bottom hardware devices located in the storage system layer. In the last years, many researchers have been proposed solutions to improve the I/O architecture considering different approaches. Some of them take advantage of hardware devices while others focus on a sophisticated software approach. However, due to the complexity of dealing with high-performance environments, creating solutions to improve I/O performance in both software and hardware is challenging and gives researchers many opportunities. Classifying these improvements in different dimensions allows researchers to understand how these improvements have been built over the years and how it progresses. In addition, it also allows future efforts to be directed to research topics that have developed at a lower rate, balancing the general development process. This research present a three-dimension characterization model for classifying research works on I/O performance improvements for large scale storage computing facilities. This classification model can also be used as a guideline framework to summarize researches providing an overview of the actual scenario. We also used the proposed model to perform a systematic literature mapping that covered ten years of research on I/O performance improvements in storage environments. This study classified hundreds of distinct researches identifying which were the hardware, software, and storage systems that received more attention over the years, which were the most researches proposals elements and where these elements were evaluated. In order to justify the importance of this model and the development of solutions that targets I/O performance improvements, we evaluated a subset of these improvements using a a real and complete experimentation environment, the Grid5000. Analysis over different scenarios using a synthetic I/O benchmark demonstrates how the throughput and latency parameters behaves when performing different I/O operations using distinct storage technologies and approaches.O gargalo de E/S continua sendo um problema central em ambientes de alto desempenho. Os ambientes de computação em nuvem, computação de alto desempenho (HPC) e big data compartilham muitas dificuldades para fornecer dados em uma taxa de tempo desejável solicitada por aplicações de alto desempenho. Isso aumenta a possibilidade de criar gargalos em todo o processo de alimentação de aplicativos pelos dispositivos de hardware inferiores localizados na camada do sistema de armazenamento. Nos últimos anos, muitos pesquisadores propuseram soluções para melhorar a arquitetura de E/S considerando diferentes abordagens. Alguns deles aproveitam os dispositivos de hardware, enquanto outros se concentram em uma abordagem sofisticada de software. No entanto, devido à complexidade de lidar com ambientes de alto desempenho, criar soluções para melhorar o desempenho de E/S em software e hardware é um desafio e oferece aos pesquisadores muitas oportunidades. A classificação dessas melhorias em diferentes dimensões permite que os pesquisadores entendam como essas melhorias foram construídas ao longo dos anos e como elas progridem. Além disso, também permite que futuros esforços sejam direcionados para tópicos de pesquisa que se desenvolveram em menor proporção, equilibrando o processo geral de desenvolvimento. Esta pesquisa apresenta um modelo de caracterização tridimensional para classificar trabalhos de pesquisa sobre melhorias de desempenho de E/S para instalações de computação de armazenamento em larga escala. Esse modelo de classificação também pode ser usado como uma estrutura de diretrizes para resumir as pesquisas, fornecendo uma visão geral do cenário real. Também usamos o modelo proposto para realizar um mapeamento sistemático da literatura que abrangeu dez anos de pesquisa sobre melhorias no desempenho de E/S em ambientes de armazenamento. Este estudo classificou centenas de pesquisas distintas, identificando quais eram os dispositivos de hardware, software e sistemas de armazenamento que receberam mais atenção ao longo dos anos, quais foram os elementos de proposta mais pesquisados e onde esses elementos foram avaliados. Para justificar a importância desse modelo e o desenvolvimento de soluções que visam melhorias no desempenho de E/S, avaliamos um subconjunto dessas melhorias usando um ambiente de experimentação real e completo, o Grid5000. Análises em cenários diferentes usando um benchmark de E/S sintética demonstra como os parâmetros de vazão e latência se comportam ao executar diferentes operações de E/S usando tecnologias e abordagens distintas de armazenamento

    Reducing access latency of MLC PCMs through line striping

    No full text
    corecore