303 research outputs found

    An RF BIST Architecture for Output Stages of Multistandard Radios

    No full text
    Article accepté pour publicationInternational audienceSoftware defined radios (SDR) platforms are in-creasingly complex systems which combine great flexibility and high performance. These two characteristics, together with highly integrated architectures make production test a challenging task. In this paper, we introduce an Radio Frequency (RF) Built-in Self-Test (BIST) strategy based on Periodically Nonuniform Sampling of the signal at the output stages of multistandard radios. We leverage the I/Q ADC channels and the DSP resources to extract the bandpass waveform at the output of the power amplifier (PA). Analytical expressions and simulations show that our time-interleaved conversion scheme is sensitive to time-skew. We show a time-skew estimation technique that allows us to surmount this obstacle. Simulation results show that we can effectively reconstruct the bandpass signal of the output stage using this architecture, opening the way for a complete RF BIST strategy for multistandard radios. Future developments will be focused on an efficient mapping to hardware of our new time-skew estimation for TIADC bandpass conversion

    LMS-Based RF BIST Architecture for Multistandard Transmitters

    No full text
    Article accepté pour publicationInternational audienceSoftware defined radios (SDR) platforms are increasingly complex systems which combine great flexibility and high performance. These two characteristics, together with highly integrated architectures make production test a challenging task. In this paper, we introduce an Radio Frequency (RF) Built-in Self-Test (BIST) strategy based on Periodically Nonuniform Sampling of the signal at the output stages of multistandard radios. We leverage the I/Q ADC channels and the DSP resources to extract the bandpass waveform at the output of the power amplifier (PA). Analytic expressions and simulations show that our time-interleaved conversion scheme is sensitive to time-skew. We propose a time-skew estimation technique based on a Least Mean Squares (LMS) algorithm to solve this problem. Simulation results show that we can effectively reconstruct the bandpass signal of the output stage using this architecture, opening the way for a complete RF BIST strategy for multistandard radios

    In-field Built-in Self-test for Measuring RF Transmitter Power and Gain

    Get PDF
    abstract: RF transmitter manufacturers go to great extremes and expense to ensure that their product meets the RF output power requirements for which they are designed. Therefore, there is an urgent need for in-field monitoring of output power and gain to bring down the costs of RF transceiver testing and ensure product reliability. Built-in self-test (BIST) techniques can perform such monitoring without the requirement for expensive RF test equipment. In most BIST techniques, on-chip resources, such as peak detectors, power detectors, or envelope detectors are used along with frequency down conversion to analyze the output of the design under test (DUT). However, this conversion circuitry is subject to similar process, voltage, and temperature (PVT) variations as the DUT and affects the measurement accuracy. So, it is important to monitor BIST performance over time, voltage and temperature, such that accurate in-field measurements can be performed. In this research, a multistep BIST solution using only baseband signals for test analysis is presented. An on-chip signal generation circuit, which is robust with respect to time, supply voltage, and temperature variations is used for self-calibration of the BIST system before the DUT measurement. Using mathematical modelling, an analytical expression for the output signal is derived first and then test signals are devised to extract the output power of the DUT. By utilizing a standard 180nm IBM7RF CMOS process, a 2.4GHz low power RF IC incorporated with the proposed BIST circuitry and on-chip test signal source is designed and fabricated. Experimental results are presented, which show this BIST method can monitor the DUT’s output power with +/- 0.35dB accuracy over a 20dB power dynamic range.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    A flexible BIST strategy for SDR transmitters

    No full text
    International audienceSoftware-defined radio (SDR) development aims for increased speed and flexibility. The advent of these system level requirements on the physical layer (PHY) access hardware is leading to more complex architectures, which together with higher levels of integration pose a challenging problem for product testing. For radio units that must be field-upgradeable without specialized equipment, Built-in Self-Test (BIST) schemes are arguably the only way to ensure continued compliance to specifications. In this paper we introduce a loopback RF BIST technique that uses Periodically Nonuniform Sampling (PNS2) of the transmitter (TX) output to evaluate compliance to spectral mask specifications. No significant hardware costs are incurred due to the re-use of available RX resources (I/Q ADCs, DSP, GPP, etc.). Simulation results of an homodyne TX demonstrate that Adjacent Channel Power Ratio (ACPR) can be accurately estimated. Future work will consist in validating our loopback RF BIST architecture on an in-house SDR testbed

    Spectrum Sharing and Interference in Smart Homes

    Get PDF
    Internet of Things networks using Zigbee are very popular in smart homes. However, Zigbee networks are vulnerable to the interference of Wi-Fi networks because they share the same 2.4 GHz Industrial, Scientific, and Medical radio frequency band. Studies have shown that weaker Zigbee signals might be significantly interfered by stronger Wi-Fi signals. This type of interference may cause severe problems when these types of networks coexist in an indoor environment such as in a smart home. In this thesis, the performance of a Zigbee network with and without the presence of a Wi-Fi network has been evaluated in an apartment-based indoor environment mimicking a smart home. The experimental results are obtained and analyzed in terms of received signal strength indicator, packet delay, packet drop rate, and loopback throughput by changing operating channels, distances between Zigbee and Wi-Fi devices, transmission intervals of Zigbee packets, Zigbee transmit power, and Zigbee packet lengths

    Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Architecture Lab Test Report

    Get PDF
    NASA Glenn Research Center, in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the FAA and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the current GRC prototype CNPC architecture as a demonstration platform. The security controls were integrated into a lab test bed mock-up of the Mobile IPv6 architecture currently being used for NASA flight testing, and a series of network tests were conducted to evaluate the security overhead of the controls compared to the baseline CNPC link without any security. The aim of testing was to evaluate the performance impact of the additional security control overhead when added to the Mobile IPv6 architecture in various modes of operation. The statistics collected included packet captures at points along the path to gauge packet size as the sample data traversed the CNPC network, round trip latency, jitter, and throughput. The effort involved a series of tests of the baseline link, a link with Robust Header Compression (ROHC) and without security controls, a link with security controls and without ROHC, and finally a link with both ROHC and security controls enabled. The effort demonstrated that ROHC is both desirable and necessary to offset the additional expected overhead of applying security controls to the CNPC link

    Software Defined Radio Based Frequency Modulated Continuous Wave Ground Penetrating Radar

    Get PDF
    Frequency modulated continuous wave (FMCW) radar allows for a wide range of research applications. One primary use of this technology and what is explored in this thesis, is imaging in the form of ground penetrating radar. To generate proper results, spectral wide-band reconstruction has been developed to overcome hardware limitations allowing for high resolution radar. Requiring complex reconstruction algorithms, the proposed method benefits greatly in terms of performance and implementation compared to other radar systems. This thesis develops a wideband linearly frequency modulated radar leveraging a software-defined radio (SDR). The modular system is capable of a tunable wideband bandwidth up to the maximum SDR ratings. This high-resolution system is further improved through implementation of grating side-lobe suppression filters that correct for the spectral discontinuities imposed by the reconstruction. These grating lobes are managed through multiple techniques to alleviate any ghost imaging or false positives associated with object detection. The solution provided allows for generally non-coherent devices to operate with synchronous phase giving accurate sample-level measurements. Various corrections are in place as mitigation of hardware transfer functions and system level noise. First the system was theorized and simulated, illuminating the performance of the radar. Following development of the radar, measurements were conducted to confirm proper and accurate object detection. Further experiments were performed ensuring Ground Penetrating Radar (GPR) performance as designed. Applications of this work include Synthetic Aperture Radar (SAR) imaging, innovative GPR, and unmanned aerial vehicle (UAV) systems

    Multichannel Sense and Avoid Radar for Small UAVs

    Get PDF
    This dissertation investigates the feasibility of creating a multichannel sense and avoid radar system for small fixed-wing UAVs (also known as sUAS or drones). The target sUAS is a 40% Yak-54 remote controlled aircraft with a typical payload of 10 lbs. Small UAS’s such as these are increasing in popularity for both personal, commercial, and government use including precision agriculture, infrastructure monitoring, and assisting first response. However, due to their lack of situation awareness, the FAA has placed strict regulations on their operation limiting their use on both the civil and government sides across the U.S. This miniature radar system is intended to provide these sUAS with target detection, tracking, and 3-D location and velocity information on potential non-cooperative hazards, primarily focusing on general aviation (GA) aircraft. The resulting FMCW miniature radar system has a size weight and power (SWaP) that is suitable for installing onboard the 40% Yak-54 UAS with the exception of replacing a TX power amplifier and has demonstrated, through measuring moving cars, that it is capable of target detection using a 2-D FFT processing algorithm and a constant false alarm rate (CFAR) detector. Tracking of the target was performed using the range-Doppler relationship of targets in the resulting radar image. The target’s angular information in the form of target echo angle of arrival (AoA, needed for location estimation) was estimated using interferometry. While the angular estimations were in the right direction, their uncertainties resulting in significant fluctuations in estimated target XYZ position and XYZ velocities. It was observed that in the near term, averaging the AoA (which changes relatively slowly for steady flight) is a way to reduce this uncertainly. In the future, the radar system needs to be upgraded so that it can provide the ideal 10-Hz update rate which will also provide sufficient data for more complex target AoA detection algorithms
    • …
    corecore