5,337 research outputs found

    Investigating Real-time Touchless Hand Interaction and Machine Learning Agents in Immersive Learning Environments

    Get PDF
    The recent surge in the adoption of new technologies and innovations in connectivity, interaction technology, and artificial realities can fundamentally change the digital world. eXtended Reality (XR), with its potential to bridge the virtual and real environments, creates new possibilities to develop more engaging and productive learning experiences. Evidence is emerging that thissophisticated technology offers new ways to improve the learning process for better student interaction and engagement. Recently, immersive technology has garnered much attention as an interactive technology that facilitates direct interaction with virtual objects in the real world. Furthermore, these virtual objects can be surrogates for real-world teaching resources, allowing for virtual labs. Thus XR could enable learning experiences that would not bepossible in impoverished educational systems worldwide. Interestingly, concepts such as virtual hand interaction and techniques such as machine learning are still not widely investigated in immersive learning. Hand interaction technologies in virtual environments can support the kinesthetic learning pedagogical approach, and the need for its touchless interaction nature hasincreased exceptionally in the post-COVID world. By implementing and evaluating real-time hand interaction technology for kinesthetic learning and machine learning agents for self-guided learning, this research has addressed these underutilized technologies to demonstrate the efficiency of immersive learning. This thesis has explored different hand-tracking APIs and devices to integrate real-time hand interaction techniques. These hand interaction techniques and integrated machine learning agents using reinforcement learning are evaluated with different display devices to test compatibility. The proposed approach aims to provide self-guided, more productive, and interactive learning experiences. Further, this research has investigated ethics, privacy, and security issues in XR and covered the future of immersive learning in the Metaverse.<br/

    Investigating Real-time Touchless Hand Interaction and Machine Learning Agents in Immersive Learning Environments

    Get PDF
    The recent surge in the adoption of new technologies and innovations in connectivity, interaction technology, and artificial realities can fundamentally change the digital world. eXtended Reality (XR), with its potential to bridge the virtual and real environments, creates new possibilities to develop more engaging and productive learning experiences. Evidence is emerging that thissophisticated technology offers new ways to improve the learning process for better student interaction and engagement. Recently, immersive technology has garnered much attention as an interactive technology that facilitates direct interaction with virtual objects in the real world. Furthermore, these virtual objects can be surrogates for real-world teaching resources, allowing for virtual labs. Thus XR could enable learning experiences that would not bepossible in impoverished educational systems worldwide. Interestingly, concepts such as virtual hand interaction and techniques such as machine learning are still not widely investigated in immersive learning. Hand interaction technologies in virtual environments can support the kinesthetic learning pedagogical approach, and the need for its touchless interaction nature hasincreased exceptionally in the post-COVID world. By implementing and evaluating real-time hand interaction technology for kinesthetic learning and machine learning agents for self-guided learning, this research has addressed these underutilized technologies to demonstrate the efficiency of immersive learning. This thesis has explored different hand-tracking APIs and devices to integrate real-time hand interaction techniques. These hand interaction techniques and integrated machine learning agents using reinforcement learning are evaluated with different display devices to test compatibility. The proposed approach aims to provide self-guided, more productive, and interactive learning experiences. Further, this research has investigated ethics, privacy, and security issues in XR and covered the future of immersive learning in the Metaverse.<br/

    Optimising Outcomes of Human-Agent Collaboration using Trust Calibration

    Full text link
    As collaborative agents are implemented within everyday environments and the workforce, user trust in these agents becomes critical to consider. Trust affects user decision making, rendering it an essential component to consider when designing for successful Human-Agent Collaboration (HAC). The purpose of this work is to investigate the relationship between user trust and decision making with the overall aim of providing a trust calibration methodology to achieve the goals and optimise the outcomes of HAC. Recommender systems are used as a testbed for investigation, offering insight on human collaboration with dyadic decision domains. Four studies are conducted and include in-person, online, and simulation experiments. The first study provides evidence of a relationship between user perception of a collaborative agent and trust. Outcomes of the second study demonstrate that initial trust can be used to predict task outcome during HAC, with Signal Detection Theory (SDT) introduced as a method to interpret user decision making in-task. The third study provides evidence to suggest that the implementation of different features within a single agent's interface influences user perception and trust, subsequently impacting outcomes of HAC. Finally, a computational trust calibration methodology harnessing a Partially Observable Markov Decision Process (POMDP) model and SDT is presented and assessed, providing an improved understanding of the mechanisms governing user trust and its relationship with decision making and collaborative task performance during HAC. The contributions from this work address important gaps within the HAC literature. The implications of the proposed methodology and its application to alternative domains are identified and discussed

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Becoming Human with Humanoid

    Get PDF
    Nowadays, our expectations of robots have been significantly increases. The robot, which was initially only doing simple jobs, is now expected to be smarter and more dynamic. People want a robot that resembles a human (humanoid) has and has emotional intelligence that can perform action-reaction interactions. This book consists of two sections. The first section focuses on emotional intelligence, while the second section discusses the control of robotics. The contents of the book reveal the outcomes of research conducted by scholars in robotics fields to accommodate needs of society and industry

    Human-AI Collaboration for Smart Education: Reframing Applied Learning to Support Metacognition

    Get PDF
    This chapter investigates the profound influence of intelligent virtual assistants (IVAs) on the educational domain, specifically in the realm of individualized learning and the instruction of writing abilities and content creation. IVAs, incorporating generative AI technologies such as ChatGPT and Stable Diffusion, hold the potential to bring about a paradigm shift in educational programs, emphasizing the enhancement of advanced metacognitive capacities rather than the fundamentals of communication. The subsequent recommendations stress the need to cultivate enduring proficiencies and ascertain tailored learning approaches for each learner, which will be indispensable for success in the evolving job market. In this context, prompt engineering is emerging as a vital competency, while continuous reskilling and lifelong learning become professional requisites. The proposed innovative method for teaching writing skills and content generation advocates for a reconfiguration of curricula to concentrate on applied learning techniques that accentuate the value of contextual judgment as a central pedagogical tenet and the mastery of sophisticated metacognitive abilities, which will be pivotal in the future of work
    • …
    corecore